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Repeated non-diffuse optical imaging of the brain is difficult. This is due to the fact

that the cranial bone is highly scattering and thus a strong optical barrier. Repeated

craniotomies increase the risk of complications and may disrupt the biological systems

being imaged. We previously introduced a potential solution in the form of a transparent

ceramic cranial implant called the Window to the Brain (WttB) implant. This implant

is made of nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), which possesses the

requisite mechanical strength to serve as a permanent optical access window in human

patients. In this present study, we demonstrate repeated brain imaging of n = 5 mice

using both OCT and LSI across the WttB implant over 4 weeks. The main objectives

are to determine if the WttB implant allows for chronic OCT imaging, and to shed further

light on the question of whether optical access provided by the WttB implant remains

stable over this duration in the body. The Window to the Brain implant allowed for stable

repeated imaging of the mouse brain with Optical Coherence Tomography over 28 days,

without loss of signal intensity. Repeated Laser Speckle Imaging was also possible over

this timeframe, but signal to noise ratio and the sharpness of vessels in the images

decreased with time. This can be partially explained by elevated blood flow during the

first imaging session in response to trauma from the surgery, which was also detected

by OCT flow imaging. These results are promising for long-term optical access through

the WttB implant, making feasible chronic in vivo studies in multiple neurological models

of brain disease.
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FIGURE 6 | Comparison of cross-sectional OCT intensity images between Day 0, Day 14, and Day 28 for the n = 5 mice.

craniectomy), and this change is no longer present by Day
14, where the flow is much closer to Day 28 blood flow. The
histology of brain slices taken beneath the implant (Figure 8)

further support this interpretation of the data, showing no
signs of inflammation or structural damage to the surface of
the cortex.
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FIGURE 7 | (A–E) Intensity depth profiles for each of the n = 5 mice at each time point, showing that attenuation is not increasing over the 28 days. (F) Bar graph

showing mean of normalized intensity of brain cortex for all 5 mice at each time point.

There are several important limitations to the current study.
While OCT angiography showed differential blood flow at the
various time points in agreement with LSI, direct assessment of
the blood flow (e.g., via injection of a contrast agent) was not
performed and could have provided more direct validation of
this interpretation of the imaging data. Similarly, histology of
the cerebral cortex showed a lack of inflammation in response
to the implant, but more detailed histology of the cerebral

vasculature was not performed. Finally, our interpretation of
the OCT intensity data is that attenuation of light through
the implant is not increasing, and therefore the implant is
not deteriorating over these 4 weeks in the body. This claim
would have been strengthened by comparison of the optical and
mechanical properties of the implant before implantation and
after 4 weeks in the body. However, these optical and mechanical
comparisons were made in a prior study (Davoodzadeh et al.,
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FIGURE 8 | Mouse 1 histology. (A) Craniectomy with implant removed following euthanasia. (B) Brain with skull removed. (C) H&E stain of brain section from beneath

the implant, showing no signs of inflammation.

2019) where we simulated the aging that the implants would
undergo over many decades in the body using ISO standard
methods for the aging stability of zirconia implants (i.e., autoclave
processing at 134◦C at a water partial pressure of 2–3 bar; ISO
13356:2008) (Deville et al., 2006; Chevalier et al., 2007). This
study showed that theWttB implant has excellent stability against
low temperature degradation and did not exhibit any crystallite
phase change, nor change in optical transmittance or Vickers
hardness due to these tests, making such changes very unlikely
over the 4 weeks of this current study.

CONCLUSION

The Window to the Brain implant allowed for stable repeated
imaging of themouse brain with Optical Coherence Tomography
over 28 days, without loss of signal intensity. Repeated Laser
Speckle Imaging was also possible over this timeframe, but signal
to noise ratio and the sharpness of vessels in the images decreased
with time. This can be partially explained by elevated blood flow
during the first imaging session in response to trauma from the
surgery, which was also detected by OCT flow imaging. These
results are promising for long-term optical access through the
WttB implant, making feasible chronic in vivo studies in multiple
neurological models of brain disease.
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