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HISTORY

Nerve growth factor (NGF) was discovered in the early

1950s due to its trophic (survival- and growth-promoting)

effects on sensory and sympathetic neurons (Levi-

Montalcini and Hamburger, 1951). In 1982, brain-derived

neurotrophic factor (BDNF), the second member of the

“neurotrophin” family of neurotrophic factors, was shown

to promote survival of a subpopulation of dorsal root

ganglion neurons, and subsequently purified from pig

brain (Barde et al., 1982). Since then, other members of

the neurotrophin family such as neurotrophin-3 (NT-3)

(Maisonpierre et al., 1990) and neurotrophin-4/5 (NT-4/5)

(Hallbook et al., 1991; Ip et al., 1992) have been

described, each with a distinct profile of trophic effects on

subpopulations of neurons in the peripheral and central

nervous systems.

GENE AND PROTEIN STRUCTURE

The BDNF gene (in humans mapped to chromosome 11p)

has four 50 exons (exons I–IV) that are associated with

distinct promoters, and one 30 exon (exon V) that encodes

the mature BDNF protein (Metsis et al., 1993; Timmusk

et al., 1993). Eight distinct mRNAs are transcribed, with

transcripts containing exons I–III expressed predomi-

nantly in brain and exon IV found in lung and heart

(Timmusk et al., 1993).

BDNF shares about 50% amino acid identity with NGF,

NT-3 and NT-4/5. Each neurotrophin consists of a

noncovalently-linked homodimer and contains (1) a signal

peptide following the initiation codon; and (2) a pro-

region containing an N-linked glycosylation site. Initially

produced as proneurotrophins, prohormone convertases

such as furin cleave the proneurotrophins (M.W.

,30 kDa) to the mature neurotrophin (M.W. ,14 kDa)

(Chao and Bothwell, 2002). Proneurotrophins have altered

binding characteristics and distinct biologic activity in

comparison with mature neurotrophins (Lee et al.,

2001a,b). Neurotrophins also share a distinctive three-

dimensional structure containing two pairs of antiparallel

b-strands and cysteine residues in a cystine knot motif.

BDNF SIGNAL TRANSDUCTION

Each neurotrophin binds one or more of the tropomyosin-

related kinase (trk) receptors, members of the family of

receptor tyrosine kinases (Patapoutian and Reichardt,

2001). Ligand-induced receptor dimerization results in

kinase activation; subsequent receptor autophosphoryl-

ation on multiple tyrosine residues creates specific binding

sites for intracellular target proteins, which bind to the

activated receptor via SH2 domains (Barbacid, 1994;

Patapoutian and Reichardt, 2001). These include PLCg1

(phospholipase C), p85 (the noncatalytic subunit of PI-3

kinase) and Shc (SH2-containing sequence); activation of

these target proteins can then lead to a variety of

intracellular signalling cascades such as the Ras-MAP

(mitogen-activated protein) kinase cascade and phos-

phorylation of cyclic AMP-response element binding

protein (CREB) (Patapoutian and Reichardt, 2001; Segal,

2003).

TrkA binds NGF (with low-affinity binding by NT-3 in

some systems); trkB binds BDNF and NT-4/5 with lower-

affinity binding by NT-3; and trkC binds NT-3 (Barbacid,

1994). Trk receptors exist in both a full-length (trkB.FL)

form as well as truncated (trkB.T1, trkB.T2) forms lacking

the kinase domain (Eide et al., 1996; Fryer et al., 1997).
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Although most functions attributed to BDNF are

associated with full-length trkB, several roles have been

suggested for truncated receptors, including growth and

development (Fryer et al., 1997; Yacoubian and Lo, 2000;

Luikart et al., 2003) and negative modulation of trkB

receptor expression and function (Eide et al., 1996;

Haapasalo et al., 2001; Haapasalo et al., 2002).

Expression of truncated trk receptors on astrocytes is

upregulated following injury (Frisen et al.,1993) and may

modulate neuronal vulnerability (Saarelainen et al.,

2000a,b) and sequestration of BDNF in astrocytes (Biffo

et al., 1995; Roback et al., 1995; Alderson et al., 2000).

Recent studies have shown that BDNF activates glial

calcium signalling by truncated trk receptors (Climent

et al., 2000; Rose et al., 2003).

In addition, all of the neurotrophins bind to the p75

receptor, designated p75NTR. p75NTR, related to proteins

of the tumor necrosis factor (TNFR) superfamily, has a

glycosylated extracellular region involved in ligand

binding, a transmembrane region, and a short cyto-

plasmic sequence lacking intrinsic catalytic activity

(Chao and Hempstead, 1995; Dechant and Barde, 2002).

Neurotrophin binding to p75NTR is linked to several

intracellular signal transduction pathways, including

nuclear factor-kB (NF-kB), Jun kinase and sphingo-

myelin hydrolysis (Dechant and Barde, 2002). P75NTR

signalling mediates biologic actions distinct from those

of the trk receptors, notably the initiation of

programmed cell death (apoptosis) (Casaccia-Bonnefil

et al., 1996; Frade et al., 1996; Roux et al., 1999;

Dechant and Barde, 2002). It has also been suggested

that p75 may serve to determine neurotrophin binding

specificity (Esposito et al., 2001; Lee et al., 2001a,b;

Zaccaro et al., 2001).

BDNF GENE REGULATION

A multitude of stimuli have been described that alter

BDNF gene expression in both physiologic and pathologic

states (Lindholm et al., 1994). For example, light

stimulation increases BDNF mRNA in visual cortex

(Castrén et al., 1992), osmotic stimulation increases

BDNF mRNA in the hypothalamus (Castrén et al., 1995;

Dias et al., 2003), and whisker stimulation increases

BDNF mRNA expression in somatosensory barrel cortex

(Rocamora et al., 1996). Electrical stimuli that induce

long-term potentiation (LTP) in the hippocampus, a

cellular model of learning and memory, increase BDNF

and NGF expression (Patterson et al., 1992; Castrén et al.,

1993; Bramham et al., 1996). Even physical exercise has

been shown to increase NGF and BDNF expression in

hippocampus (Neeper et al., 1995). Interestingly, BDNF

levels vary across the estrous cycle, which correlate with

its effects on neural excitability (Scharfman et al., 2003).

Distinct BDNF 50 exons are differentially regulated by

stimuli such as neural activity. For example, exons I–III,

but not exon IV, increase after kainic acid-induced

seizures (Timmusk et al., 1993) or other stimuli that

increase activity (Lauterborn et al., 1996; Tao et al.,

2002). Protein synthesis is required for the effects of

activity on exons I and II, but not III and IV, raising the

possibility that the latter act as immediate early genes

(Lauterborn et al., 1996; Castrén et al., 1998). The

transcription factor CaRF activates transcription of exon

III under the control of a calcium response element,

CaRE1 (Tao et al., 2002). CREB, which can be stimulated

by diverse stimuli ranging from activity to chronic

antidepressant treatment (Nibuya et al., 1995, 1996; Shieh

et al., 1998; Tao et al., 1998; Shieh and Ghosh, 1999), also

modulates exon III transcription. Recent evidence also

indicates that neural activity triggers calcium-dependent

phosphorylation and release of methyl-CpG binding

protein 2 (MeCP2) from BDNF promoter III to derepress

transcription (Chen et al., 2003).

LOCALIZATION, TRANSPORT AND RELEASE

BDNF and trkB mRNA have a widespread distribution in

the central nervous system (Merlio et al., 1993; Conner

et al., 1997). BDNF and trkB protein immunoreactivity is

also widespread (Conner et al., 1997; Yan et al., 1997a, b;

Drake et al., 1999). Like BDNF mRNA, constitutive

BDNF protein expression is particularly high in the

hippocampus, where the mossy fibre axons of dentate

granule cells display BDNF immunoreactivity (Conner

et al., 1997).

Unlike the classical target-derived trophic factor model

in which neurotrophins—such as NGF—are retrogradely

transported, there is now abundant evidence that BDNF is

also anterogradely transported in brain. First, BDNF

protein is localized to nerve terminals (Conner et al.,

1997), and pathway transection or axonal transport

inhibition abrogates this terminal expression (Altar et al.,

1997; Conner et al., 1997; Altar and DiStefano, 1998).

Second, higher-resolution studies have shown that BDNF

is associated with dense-core vesicles (Fawcett et al.,

1997; Altar and DiStefano, 1998), which are the primary

site for neuropeptide storage and release from nerve

terminals. Third, further functional studies have supported

the anterograde transport hypothesis (Fawcett et al., 1998,

2000). Fourth, pro-BDNF is shuttled from the trans-Golgi

network into secretory granules, where it is cleaved by

prohormone convertase 1 (PC1) (Farhadi et al., 2000).

In addition, emerging evidence suggests that both

BDNF and trk receptors may undergo regulated

intracellular transport. For example, seizures lead to

redistribution of BDNF mRNA from hippocampal CA3

cell bodies to their apical dendrites (Bregola et al., 2000;

Simonato et al., 2002). Trk signalling is now thought to

include retrograde transport of intact neurotrophin–trk

complexes to the neuronal cell body (Miller and Kaplan,

2001; Ginty and Segal, 2002).

Recent evidence indicates that neurotrophins are

released acutely following neuronal depolarization
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(Griesbeck et al., 1999; Mowla et al., 1999; Goggi et al.,

2003). In fact, direct activity-dependent pre- to post-

synaptic transneuronal transfer of BDNF has recently been

demonstrated using fluorescently-labelled BDNF (Kohara

et al., 2001). The released form of BDNF is thought to be

proBDNF (Mowla et al., 2001), raising the possibility of

postsecretory proteolytic processing by membrane-

associated or extracellular proteases in the modulation of

BDNF action (Lee et al., 2001a,b).

BDNF AND DEVELOPMENT

BDNF has survival- and growth-promoting actions on a

variety of neurons, including dorsal root ganglion cells

(Acheson et al., 1995) and hippocampal and cortical

neurons (Huang and Reichardt, 2001). Certain peripheral

sensory neurons, especially those in vestibular and nodose-

petrosal ganglia, depend on the presence of BDNF because

BDNF homozygous (2 /2 ) knockout mice lack these

neurons (Huang and Reichardt, 2001). Unlike NGF,

sympathetic neurons are not affected, nor are motor

neurons. BDNF homozygous (2 /2 ) knockout mice fail to

survive past 3 weeks, but heterozygous BDNF knockout

(þ /2 ) mice are viable, and exhibit a variety of phenotypes,

including obesity (Lyons et al., 1999; Kernie et al., 2000),

decreased seizure susceptibility (Kokaia et al., 1995) and

impaired spatial learning (Linnarsson et al., 1997).

Interestingly, conditional postnatal BDNF gene deletion

(Rios et al., 2001) and reduction in trkB expression (Xu

et al., 2003) also cause obesity.

Physiologic regulation of BDNF gene expression

may be very important in the development of the brain.

For example, BDNF contributes to activity-dependent

development of the visual cortex. Provision of excess

BDNF (Cabelli et al., 1995) or blockade of BDNF

signalling (Cabelli et al., 1997) leads to abnormal

patterning of ocular dominance columns during a critical

FIGURE 1 Multiple potential effects of local BDNF release at glutamatergic synapses. LEFT: Postsynaptic mechanisms. Top: BDNF released from
dense core vesicles diffuses across the synaptic cleft to activate full-length trkB receptors (shown dimerized, trkB TKþ ) located at synapses on
postsynaptic dendritic spines. Bottom: Postsynaptic signal transduction leads to protein phosphorylation, such as the NR2B subunit of the NMDA
receptor, as well as other actions, leading to enhanced synaptic transmission. Note that the site of transcription could be the nucleus, as shown, or occur
locally in the dendrite. CENTER: Presynaptic mechanisms. Top: BDNF activates, in an autocrine fashion, full-length trkB receptors on the plasma
membrane of the axon terminal. Bottom: Presynaptic trkB activation leads to increased neurotransmitter release by several potential mechanisms.
RIGHT: Synaptic modulation by glial cells. Top: When BDNF is released into the synaptic cleft, it may bind to receptors on juxtaposed glial cells, such
as truncated trkB (trkB TK 2 ), possibly full-length trkB (not shown) or p75 receptors. Bottom: Activation of truncated trkB has the potential to
modulate glial Ca2þ signalling, and p75 activation can initiate other pathways; both could ultimately lead to changes in synaptic transmission.
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period of visual cortex development. This suggests a role

for BDNF in axonal path-finding during development.

BDNF also has powerful effects on dendritic morphology

(McAllister et al., 1997; Murphy et al., 1998; Horch and

Katz, 2002; Tolwani et al., 2002).

EFFECTS ON SYNAPTIC TRANSMISSION

The first studies of BDNF effects on synaptic

transmission showed that BDNF increased the frequency

of miniature excitatory postsynaptic currents (EPSCs) in

Xenopus cultures (Lohof et al., 1993). Since then,

numerous studies have examined the actions of BDNF.

Overall, BDNF appears to strengthen excitatory (gluta-

matergic) synapses and weaken inhibitory (GABAergic)

synapses. Schuman and colleagues demonstrated that

exposure of adult rat hippocampal slices to BDNF led to

a long-lasting potentiation of afferent input to hippo-

campal pyramidal cells (Kang and Schuman, 1995).

Subsequent studies have supported a role of BDNF in

LTP (Korte et al., 1995, 1996; Patterson et al., 1996;

Kang, 1997; Xu et al., 2003). For example, incubation of

hippocampal or visual cortical slices with trkB inhibitors

inhibits LTP (Figurov et al., 1996), and hippocampal

slices from BDNF knockout animals exhibit impaired

LTP induction (Korte et al., 1995) which is restored by

reintroduction of BDNF (Korte et al., 1996; Patterson

et al., 1996).

Whether BDNF-induced synaptic potentiation occurs

primarily by a presynaptic action (e.g. through enhance-

ment of glutamate release) or postsynaptically (e.g. via

phosphorylation of neurotransmitter receptors) is inten-

sely debated (Schinder and Poo, 2000) (Fig. 1). A number

of studies have provided evidence for a presynaptic locus

(Xu et al., 2000; Tyler et al., 2002) (see also, Kafitz et al.

(1999)), yet evidence for postsynaptic actions has also

been obtained (Black, 1999; Thakker-Varia et al., 2001)

(reviewed in Poo (2001)). Both pre- and postsynaptic trkB

receptors in the hippocampus may be important (Drake

et al., 1999).

A role for BDNF in GABAergic synapses was first

raised by studies showing that BDNF influences

GABAergic neuronal phenotype (Marty et al., 1996).

Subsequently, BDNF was shown to decrease inhibitory

(GABAergic) synaptic transmission (Tanaka et al., 1997;

Frerking et al., 1998; Wardle and Poo, 2003), perhaps in

part via modulation of GABAA receptor phosphorylation

(Jovanovic et al., 2004). Interestingly, BDNF may also

regulate the efficacy of GABAergic synapses by direct

downregulation of the neuronal Kþ–Cl2 co-transporter,

which would impair neuronal Cl2 extrusion and weaken

GABAergic inhibition (Rivera et al., 2002). Similarly, a

recent paper found differential effects of BDNF on

GABA-mediated currents in excitatory and inhibitory

neuron subpopulations, selectively decreasing the efficacy

of inhibitory neurotransmission by downregulation of Cl2

transport (Wardle and Poo, 2003).

NEUROGENESIS

BDNF has also been found to enhance neurogenesis. For

example, intraventricular infusion of BDNF or adeno-

viral-induced BDNF activity increases the number of

neurons in the adult olfactory bulb, striatum, septum and

thalamus (Zigova et al., 1998; Benraiss et al., 2001;

Pencea et al., 2001), which can be potentiated by

concurrent inhibition of glial differentiation of subepen-

dymal progenitor cells (Chmielnicki et al., 2004). Studies

of cultured progenitor cells have elucidated some of the

signalling mechanisms, which appear to involve trkB

activation, followed by activation of the MAP kinase and

PI3-kinase pathways (Barnabe-Heider and Miller, 2003)

and downstream modification of basic helix-loop-helix

transcription factors (Ito et al., 2003). Although some

studies have concluded that the primary effect of BDNF

is on proliferation (Katoh-Semba et al., 2002), other

experiments suggest an important effect on survival (Lee

et al., 2002). The effects of BDNF may depend on a

previous history of ischemic damage (Larsson et al.,

2002; Gustafsson et al., 2003).

LEARNING AND MEMORY

Since BDNF appears to be involved in activity-

dependent synaptic plasticity, there is great interest in

its role in learning and memory (Yamada and

Nabeshima, 2003). The hippocampus, which is required

for many forms of long-term memory in humans and

animals, appears to be an important site of BDNF action.

Rapid and selective induction of BDNF expression in the

hippocampus during contextual learning has been

demonstrated (Hall et al., 2000), and function-blocking

antibodies to BDNF (Alonso et al., 2002), BDNF

knockout (Linnarsson et al., 1997), knockout of

forebrain trkB signalling (Minichiello et al., 1999), or

overexpression of truncated trkB (Saarelainen et al.,

2000a,b) in mice impairs spatial learning. Another study

demonstrated upregulation of BDNF in monkey parietal

cortex associated with tool-use learning (Ishibashi et al.,

2002). In humans, a valine to methionine polymorphism

at the 50 pro-region of the human BDNF protein was

found to be associated with poorer episodic memory; in

vitro, neurons transfected with met-BDNF-GFP exhib-

ited reduced depolarization-induced BDNF secretion

(Egan et al., 2003).

BDNF AND EPILEPSY

The discovery that limbic seizures increase NGF mRNA

levels (Gall and Isackson, 1989) led to the idea that

seizure-induced expression of neurotrophic factors may

contribute to the lasting structural and functional

changes underlying epileptogenesis (Gall et al., 1991;

1997; Jankowsky and Patterson, 2001). Recent in vitro
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and in vivo findings implicate BDNF in the cascade of

electrophysiologic and behavioural changes underlying

the epileptic state. BDNF mRNA and protein are

markedly upregulated in the hippocampus by seizure

activity in animal models (Ernfors et al., 1991;

Isackson et al., 1991; Lindvall et al., 1994; Nibuya

et al., 1995), and infusion of anti-BDNF agents (Binder

et al., 1999b) or use of BDNF knockout (Kokaia et al.,

1995) or truncated trkB-overexpressing (Lahteinen et al.,

2002) mice inhibits epileptogenesis in animal models.

Conversely, direct application of BDNF induces

hyperexcitability in vitro (Scharfman, 1997; Scharfman

et al., 1999), overexpression of BDNF in transgenic

mice leads to spontaneous seizures (Croll et al., 1999),

and intrahippocampal infusion of BDNF is sufficient to

induce seizure activity in vivo (Scharfman et al., 2002)

(but see, Reibel et al. (2000)). The hippocampus and

closely associated limbic structures are thought to be

particularly important in the pro-epileptogenic effects of

BDNF (Binder et al., 1999a,b), and indeed increased

BDNF expression in the hippocampus is found in

specimens from patients with temporal lobe epilepsy

(Mathern et al., 1997; Takahashi et al., 1999). It is

hoped that understanding of the hyperexcitability

associated with BDNF in epilepsy animal models may

lead to novel anticonvulsant or antiepileptogenic

therapies (Binder et al., 2001).

BDNF AND PAIN

BDNF also may play an important neuromodulatory role

in pain transduction (Malcangio and Lessmann, 2003).

BDNF is synthesized by dorsal horn neurons and

markedly upregulated in inflammatory injury to peripheral

nerves (along with NGF) (Fukuoka et al., 2001). BDNF

acutely sensitizes nociceptive afferents and elicits

hyperalgesia which is abrogated by BDNF inhibitors

(Kerr et al., 1999; Thompson et al., 1999; Pezet et al.,

2002). Central pain sensitization is an activity-dependent

increase in excitability of dorsal horn neurons leading to a

clinically intractable condition termed “neuropathic pain”

in which normally nonpainful somatosensory stimuli

(touch and pressure) become exquisitely painful (allo-

dynia). Electrophysiological and behavioural data demon-

strate that inhibition of BDNF signal transduction

inhibits central pain sensitization (Kerr et al., 1999;

Pezet et al., 2002).

BDNF AND NEURODEGENERATIVE DISEASES

The idea that degenerative diseases of the nervous

system may result from insufficient supply of neuro-

trophic factors has generated great interest in BDNF as a

potential therapeutic agent. Many reports have docu-

mented evidence of decreased expression of BDNF in

neurological disease (Murer et al., 2001). Selective

reduction of BDNF mRNA in the hippocampus has been

reported in Alzheimer’s disease specimens (Phillips

et al., 1991; Ferrer et al., 1999), although in an animal

model upregulation appears to occur in plaque-related

glial cells (Burbach et al., 2004). Decreased BDNF

protein has been demonstrated in the substantia nigra in

Parkinson’s disease (Howells et al., 2000). Interestingly,

recent work has implicated BDNF in Huntington’s

disease as well. Huntingtin, the protein mutated in

Huntington’s disease, upregulates BDNF transcription,

and loss of huntingtin-mediated BDNF transcription

leads to loss of trophic support to striatal neurons which

subsequently degenerate in the hallmark pathology of

the disorder (Zuccato et al., 2001). A recent study has

demonstrated that huntingtin normally inhibits the

neuron restrictive silencer element (NRSE) involved in

tonic repression of transcription from BDNF promoter II

(Zuccato et al., 2003). In all of these disorders,

provision of BDNF or increasing endogenous BDNF

production may conceivably be therapeutic if applied in

the appropriate spatiotemporal context (Spires et al.,

2004).

BDNF AND NEUROPSYCHIATRIC DISEASE

BDNF signalling may also be involved in affective

behaviours (Altar, 1999). Environmental stresses such as

immobilization that induce depression also decrease

BDNF mRNA (Smith et al., 1995). Conversely, physical

exercise is associated with decreased depression and

increased BDNF mRNA (Russo-Neustadt et al., 1999;

Cotman and Berchtold, 2002). Existing treatments for

depression are thought to act primarily by increasing

endogenous monoaminergic (i.e. serotonergic and nor-

adrenergic) synaptic transmission, and recent studies have

shown that effective antidepressants increase BDNF

mRNA (Dias et al., 2003) and protein (Chen et al.,

2001; Altar et al., 2003). Exogenous delivery of BDNF

promotes the function and sprouting of serotonergic

neurons in adult rat brains (Mamounas et al., 1995), and

BDNF-deficient mice are also deficient in serotonergic

innervation (Lyons et al., 1999). Thus, new pharmaco-

logic strategies are focused on the potential antidepressant

role of BDNF.

It has also been hypothesized that BDNF may be

involved in bipolar disorder (Tsai, 2004). Interestingly,

lithium, a major drug for the treatment of bipolar disorder,

increases BDNF and trkB activation in cerebral cortical

neurons (Hashimoto et al., 2002). BDNF is an attractive

candidate gene for susceptibility to bipolar disorder, and

some (Neves-Pereira et al., 2002; Sklar et al., 2002) but

not other (Hong et al., 2003; Nakata et al., 2003) studies

suggest linkage between BDNF polymorphisms and

disease susceptibility (Green and Craddock, 2003). How

alterations in BDNF activity may relate to fluctuating

bouts of mania and depression in bipolar disorder is still a

matter of speculation.
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SUMMARY

Since the purification of BDNF in 1982, a great deal of

evidence has mounted for its central roles in brain

development, physiology, and pathology. Aside from its

importance in neural development and cell survival,

BDNF appears essential to molecular mechanisms of

synaptic plasticity. Basic activity-related changes in the

central nervous system are thought to depend on BDNF

modification of synaptic transmission, especially in the

hippocampus and neocortex. Pathologic levels of BDNF-

dependent synaptic plasticity may contribute to conditions

such as epilepsy and chronic pain sensitization, whereas

application of the trophic properties of BDNF may lead to

novel therapeutic options in neurodegenerative diseases

and perhaps even in neuropsychiatric disorders.
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