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Epilepsy is a disorder of the brain characterized by
the periodic and unpredictable occurrence of seizures.
Although complex partial epilepsy is the most
common form in adults (40% of all cases)1, control of
seizures can be achieved only in a minority of these
cases by optimal current anticonvulsant treatment.
Consequently, complex partial epilepsy remains a
major public health problem affecting approximately
one million people in the USA. 

Elucidating the cellular and molecular
mechanisms of epileptogenesis could provide novel
therapeutic approaches aimed at the prevention or
management of the disease. The discovery that limbic
seizures increase nerve growth factor (NGF) mRNA
levels2 led to the idea that seizure-induced expression
of neurotrophic factors might contribute to the lasting
structural and functional changes underlying
epileptogenesis3. Similarly, increases in neurotrophin
(NT) expression that follow other insults (for
example, ischemia and traumatic brain injury) could
also contribute to epileptogenesis4. In the past several
years, there has been an exciting confluence of in vitro
and in vivo findings that strongly implicate the NT
brain-derived neurotrophic factor (BDNF) in
particular limbic circuits in the cascade of
electrophysiological and behavioral changes

underlying the epileptic state. The purpose of this
review is to critically examine the evidence for a role
of BDNF in epileptogenesis.

BDNF signal transduction

BDNF is a member of the neurotrophin family of
neurotrophic factors, which also includes NGF, NT-3,
NT-4/5 and NT-6. NTs bind with high affinity, but
differing specificity, to NT receptors (trkA, trkB and
trkC) and each NT binds with low affinity to the p75
receptor. Trk proteins are transmembrane receptor
tyrosine kinases (RTKs) homologous to other RTKs,
such as the epidermal growth factor (EGF) receptor
and insulin receptor family5. Signaling by RTKs is
known to involve ligand-induced receptor dimerization
and consequent trans-autophosphorylation6. Receptor
autophosphorylation on multiple tyrosine residues
creates specific binding sites for intracellular target
proteins that bind to the activated receptor via SH2
domains6. Activation of target proteins can result in
activation of a variety of intracellular signaling
cascades, including the Ras–mitogen-activated protein
kinase (MAPK) cascade and phosphorylation of
Ca2+/cAMP-response-element-binding proteins
(CREB; Ref. 7).

BDNF effects in vitro

The classical view of NT function includes effects on
the growth and survival of neurons during
development. BDNF, in particular, appears to
regulate neuronal morphology and synaptogenesis
and have neuroprotective effects in diverse areas of
the CNS (Ref. 8). Whereas the functions of NTs in
the adult brain are less clear, they might include
neuroprotective and morphological effects following
pathologic upregulation in response to seizures4.

Various studies have shown that brain-derived neurotrophic factor (BDNF)

increases neuronal excitability and is localized and upregulated in areas

implicated in epileptogenesis. Seizure activity increases the expression of

BDNF mRNA and protein, and recent studies have shown that interfering with

BDNF signal transduction inhibits the development of the epileptic state

in vivo.These results suggest that BDNF contributes to epileptogenesis.

Further analysis of the cellular and molecular mechanisms by which BDNF

influences excitability and connectivity in adult brain could provide novel

concepts and targets for anticonvulsant or anti-epileptogenic therapy.
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However, little direct evidence exists to support
such actions.

By contrast, more recently described effects of NTs
in the adult brain suggest that they have striking
influences on neuronal excitability9. For example,
application of NTs (including BDNF) has been shown
to potentiate synaptic transmission in vitro10 and in
vivo11. BDNF enhances excitatory synaptic
transmission10,12 and reduces inhibitory synaptic
transmission13. In the hippocampus, a critical level of
BDNF/trkB activation appears to be vital for
modulating synaptic efficacy. Pretreatment of adult
hippocampal slices with the BDNF scavenger,
trkB-Fc, reduces LTP (Ref. 14) and hippocampal
slices from BDNF knockout animals exhibit impaired
LTP induction that can be restored by reintroducing
BDNF (Refs 15,16). In addition, trk receptor
antagonists such as K252a block hyperexcitability in
the hippocampus following BDNF exposure in vitro17.
The mechanism underlying synaptic potentiation by
BDNF is currently unclear, but could involve the
facilitation of transmitter release18, phosphorylation
of specific NMDA receptor subunits19 and direct
effects on ion channels and/or conductances20,21.
Enhanced excitatory transmission might also arise
indirectly, because BDNF is known to affect the
structure and function of inhibitory (specifically,
GABAergic) neurons22.

Localization, transport and release of BDNF

BDNF mRNA has a widespread distribution in the
CNS (Ref. 23). Similarly, mRNA encoding the high
affinity receptor for BDNF, trkB, is located
throughout the brain24,25. Notably, high levels of
BDNF and trkB mRNA expression are found in brain
areas that have been associated with seizure
susceptibility, such as hippocampus and entorhinal
cortex4 (Fig. 1a). Within hippocampus, the granule
cells, pyramidal cells and some hilar GABAergic
neurons express mRNA encoding BDNF and trkB.

BDNF protein immunoreactivity also appears to
be widespread and preferentially localized in cell
bodies and axons, compared to dendrites23. Similar
to BDNF mRNA, constitutive BDNF protein
expression is high in hippocampus, where the mossy
fiber axons of dentate granule cells are intensely
immunoreactive23,26 (Fig. 1c).

By contrast to the classical target-derived trophic
factor model, in which NTs are retrogradely
transported, abundant evidence has shown that
BDNF is anterogradely transported in brain23,27,28. In
particular, within hippocampus, it appears that
BDNF within the hilus and CA3 stratum lucidum is
synthesized by granule cells, anterogradely
transported and preferentially stored in mossy fiber
terminal boutons29. Biochemical studies suggest that
endogenous BDNF might be packaged in a releasable
vesicular pool30 and recent evidence indicates that
NTs are released acutely following depolarization31,78.

BDNF upregulation by seizure activity

Seizures have been shown to stimulate the expression
of a variety of genes, including those that encode
transcription factors32,33, neuropeptides34, growth
associated proteins (GAP-43; Ref. 35), proteases36 and
also NTs and trk receptors. In particular, BDNF,
NGF and trkB mRNA concentrations are increased in
kindling and other seizure models, whereas NT-3
mRNA concentrations are decreased3,24,37–39. The
magnitude of increase for BDNF mRNA is greatest in
the hippocampus, being markedly upregulated in the
dentate gyrus and CA1–CA3 pyramidal cell layers
(Fig. 1b).
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Fig. 1. Localization and regulation of brain-derived neurotrophic factor
mRNA and protein and phospho-trk immunoreactivity. (a) and (b)
Darkfield photomicrographs showing in situ hybridization for brain-
derived neurotrophic factor (BDNF) mRNA in hippocampus in basal
state (a) or 8 h after recurrent limbic seizures induced by contralateral
hilus lesion (b). Note the basal distribution in the dentate gyrus and
CA1–CA3 pyramidal cell layers and the dramatic increases in these
areas following seizures. (c) and (d) Coronal sections showing BDNF
immunoreactivity in hippocampus in basal state (c) or 12 h after hilus
lesion-induced limbic seizures (d). Note the basal BDNF
immunoreactivity in the mossy fiber pathway and the increase in the
dentate gyrus granule cells, mossy fiber pathway (mf) and CA1–CA3
pyramidal cells following seizures. (e) and (f) Coronal sections showing
phospho-trk immunoreactivity in hippocampus in sham-stimulated
animal (e) or from animal 24 h after limbic seizures induced by
hippocampal kindling stimulation (f). Note the low level of basal
phospho-trk immunoreactivity and the increase, 24 h after seizures, in a
pattern that corresponding to the mossy fiber pathway (arrow). For
more detail, see Refs 3,37,46,57.
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This upregulation has also been shown at the
protein level. Extracts and in vivo microdialysates
from animals given chemical convulsions show
marked increases in neurotrophic activity40,41 and
increases in BDNF protein content have been
described following hilar lesion-induced limbic
seizures, kindling and kainate administration42–45.

Seizure-induced increases in BDNF mRNA levels
are transient, whereas the increase in BDNF protein
content persists longer. For example, following lesion-
induced recurrent limbic seizures, BDNF mRNA
concentrations peak 6 h after the seizure onset and
return to control levels ~12 h after seizures have
ended3. By contrast, initial increases in BDNF protein
content lag behind mRNA changes by 4 h, but remain
well elevated for four days after the seizure episode42.

It appears that, following seizures, newly
expressed BDNF is anterogradely transported. Using
hippocampal microdissection and quantification of
BDNF by two-site ELISA, Elmer et al.43 showed that
after seizures BDNF protein levels were maximal at
12 h in the dentate gyrus, but were maximal after
24 h in CA3. This is consistent with (but does not
prove) anterograde transport of seizure-induced
BDNF protein. More recent evidence regarding the
anatomical distribution and time course of BDNF
immunoreactivity following seizures has shown that
there is increased BDNF immunoreactivity in
dentate granule cells by 4 h after seizure induction,
followed by large increases in hilus and CA3 stratum
lucidum 12–24 h later. During the latter time period,
BDNF immunoreactivity within the granule cell
bodies had returned to control levels46 (Fig. 1d).

Effects of inhibition of BDNF/trkB in seizure models

Evidence that BDNF is upregulated by seizures and
positively modulates neuronal excitability within

hippocampus suggests that BDNF and possibly other
NTs play a role in epileptogenesis. This view is
supported by recent studies using the kindling model.
In this model, repeated, focal application of initially
subconvulsive electrical stimuli eventually results in
intense focal and tonic–clonic seizures. Once
established, this enhanced sensitivity to electrical
stimulation persists throughout the life of the animal.
The kindling model has been an important tool,
because it enables experimental control over seizures
and precise quantitation of the effects of in vivo
experimental manipulation of epileptogenesis.

Funabashi et al.47 and Van der Zee et al.48 found
that kindling development could be delayed by
intraventricular infusion of anti-NGF antisera.
However, the lack of specificity of the antisera limited
interpretation of these experiments. Kokaia et al.49

reported a greater than twofold reduction in the rate of
kindling development in BDNF heterozygous (+/−)
mice, in which one BDNF allele had been inactivated
by gene targeting. Both the basal and seizure-induced
concentrations of BDNF mRNA were lower in the
BDNF+/− compared to wild-type mice, consistent with
the idea that reduced trkB receptor activation in the
BDNF+/− mice contributed to the inhibition of kindling
development. The twofold reduction in kindling rate in
the heterozygotes is striking, given that presumably
there was some reduction (but not elimination) of trkB
receptor signaling. Conversely, transgenic mice that
overexpress BDNF have more severe seizures in
response to kainic acid and some display spontaneous
seizures50. Obviously, results from both the BDNF+/−

knockouts and the BDNF transgenic mice must be
interpreted with caution given potential
developmental effects of altered BDNF levels. The
availability of conditional knockouts for trkB will
enable analysis of the importance of trkB signaling in
adult animals de novo51.

A recent approach involved selective blockade of
trkB receptors during kindling development using
trk-specific ‘receptor bodies’52. These compounds are
divalent homodimers that contain the ligand-binding
domain of a given trk receptor and thus act as false
receptors or ‘receptor bodies’ that putatively
sequester endogenous NT. Intracerebroventricular
(ICV) infusion of trkB receptor body, trkB-Fc,
inhibited the development of kindling in comparison
to animals treated with saline, human IgG, trkA-Fc
or trkC-Fc (Ref. 52; Fig. 2). Furthermore, the degree
of immunohistochemical penetration of trkB-Fc into
hippocampus, but not striatum, septum or other
structures, correlated with the magnitude of
inhibition of kindling development. These results
suggest that activation of trkB receptors contributes
to the development of kindling and that the
hippocampus might be a primary site of trkB action.

Although the finding that ICV infusion of trkB-Fc
interferes with kindling strongly suggests that BDNF
is involved in the development of kindled seizures, an
alternative explanation exists. Recent data have
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Fig. 2. Inhibition of
kindling by trkB-Fc.
(a) Representative
electroencephalograms
of seizures in animals
treated either with human
IgG (hIgG) or trkB-Fc
during kindling
stimulations. Arrows
mark the stimulation
artifact. Whereas the
hIgG-treated (control)
animal had a 36 s seizure
discharge with a clonic
motor component of 30 s,
the trkB-Fc-treated animal
had a 19 s seizure
discharge with facial
clonus. Shorter and
behaviorially less-intense
seizures were
consistently observed in
the trkB-Fc-treated
animals compared with
controls. (b) Number
(mean ± SE) of
stimulations to kindling
criterion (three
consecutive clonic motor
seizures) by treatment
group. All groups (except
saline-treated) received
intracerebroventricular
doses of 50 µg/day.
TrkB-Fc-treated animals
required significantly
(**P < 0.01) more
stimulations to reach the
kindled state. For more
detail see Ref. 53.
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suggested that, under some circumstances, trkB-Fc
can act as a carrier for BDNF, enhancing both its
distribution and activity53. However, for carrier
effects, molar ratios of trkB-Fc to BDNF were not
tested past a 2:1 excess and in vitro data indicate total
BDNF inhibition occurs at ratios of 10:1 or greater.
The 55 µg/day doses used in the kindling study52

should have represented a vast excess of trkB-Fc
relative to BDNF and therefore should have blocked
the effects of BDNF.

By contrast, chronic intrahippocampal infusion of
BDNF inhibits the development of hippocampal
kindling and reduces the duration of electrographic
seizure54. However, prolonged exposure to increased
concentrations of BDNF suppresses trkB receptor
responsiveness and reduces trkB mRNA and protein
levels in vitro55,56. Similarly, a six-day infusion of
BDNF into the adult hippocampus in vivo decreases
trkB receptor levels by 80% (Ref. 55). Thus, it is
possible that chronic BDNF infusion in these
kindling studies led to trkB downregulation and
reduced responsiveness. In such a case, the retarded
kindling development observed is consistent with the
findings of the trkB-Fc infusion studies and those of
BDNF heterozygotes49 in implicating trkB receptor
activation in kindling development. Alternatively,
BDNF infusion could have upregulated the
inhibitory molecule neuropeptide Y (NPY) in these
studies (see below).

Activation of trk receptors after seizures

The work described above suggests that limiting
activation of the trkB receptor inhibits
epileptogenesis, but whether and where NT receptor
activation occurs during epileptogenesis remained
unclear. Because ligand-induced receptor tyrosine
phosphorylation is essential for NT-induced cellular
responses5, receptor tyrosine phosphorylation seems
a logical index of the level of biological NT activity.
Using antibodies that selectively recognize the
phosphorylated form of trk receptors (phospho-trk),
investigators found that, in contrast to the low level of
phospho-trk immunoreactivity that is constitutively
expressed in the hippocampus of adult rats (Fig. 1e),
phospho-trk immunoreactivity was strikingly
increased following partial kindling or kainate-
induced seizures57. Furthermore, following seizures,
phospho-trk immunoreactivity was selectively
increased in the dentate hilus and CA3 stratum
lucidum of the hippocampus (Fig. 1f ). This
distribution coincides with the mossy fiber pathway
arising from the dentate gyrus granule cells.

Interestingly, the anatomical distribution, time
course and threshold for seizure-induced phospho-trk
immunoreactivity correspond with the pattern of
BDNF upregulation following seizures (Fig. 1d). That
is, both phospho-trk and BDNF immunoreactivity are
most prominently increased in hippocampal CA3
stratum lucidum and are maximal 24 h after seizure
onset57 suggesting that the phospho-trk
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Fig. 3. Brain-derived neurotrophic factor-induced hyperexcitability of the mossy fiber pathway. (a)
Responses of CA3 pyramidal cells, recorded extracellularly from the pyramidal cell layer, to single and
repetitive afferent stimulation in hippocampal slices, before and after brain-derived neurotrophic
factor (BDNF) exposure. (i) Traces on left show responses to single stimuli applied to the fimbria (top)
or mossy fibers (bottom) at submaximal intensity, before BDNF exposure. Traces on right show
responses to the same stimuli, applied after bath application of BDNF, showing a greater response to
mossy fiber but not fimbria stimulation. (ii) The top trace shows extracellularly recorded responses to
repetitive stimulation of the mossy fibers in the presence of BDNF leading to spreading depression in
the CA3 pyramidal cell layer. Traces below show responses to the first three pairs of stimuli that led to
the spreading depression episode shown above, illustrating the addition of multiple population
spikes as stimulation was initiated. Only four pairs of stimuli at 1 Hz evoked spreading depression,
which never occurred in response to stimulation of other inputs, or stimulation of mossy fibers in the
absence of BDNF. (b) Responses of dentate gyrus granule cells to mossy fiber stimulation in a
pilocarpine-treated rat with mossy fiber sprouting. The top trace shows the response to a stimulus
before BDNF application. This elicited an antidromic population spike (arrow) and a second,
orthodromic population spike (arrowhead), presumably the direct granule cell axon stimulation,
followed by excitation of recurrent mossy fibers innervating granule cells. The middle trace shows the
response to the same stimulus, but after BDNF exposure, evoking a burst of population spikes. The
bottom trace shows that, in addition to evoked bursts after BDNF application, spontaneous bursts
were recorded. This activity was not recorded in the CA1 or CA3 regions, and thus was probably
generated from granule cells, an hypothesis consistent with intracellular recordings59. (c) Responses
of CA3 pyramidal cells to mossy fiber stimulation in transgenic mice overexpressing BDNF.  The top
trace shows the response to a pair of stimuli to the hilus, which evoked large population spikes in the
CA3 cell layer, recorded extracellularly, in the absence of BDNF.  The bottom trace shows that after
several pairs of stimuli, multiple population spikes were evoked. For more detail see Refs 17,50,59.
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immunoreactivity might be caused by seizure-induced
increases in BDNF expression and release.

BDNF-induced hyperexcitability of the mossy fiber-CA3

synapse

Based on data from normal mature animals described
above, one might speculate that BDNF upregulation in
the adult brain could predispose certain areas to
seizures or even cause seizures. Indeed, in adult rat
hippocampal slices, exposure to BDNF can produce
multiple discharges and spreading depression in area
CA3 and the entorhinal cortex upon afferent
stimulation17 (Fig. 3a). Acute application of exogenous
BDNF to hippocampal slices appears to preferentially
enhance the efficacy of excitatory mossy fiber synapses
onto CA3 pyramidal cells17 (Fig. 3a).

Actions of BDNF have also been examined after
pilocarpine-induced status epilepticus and chronic
seizures, in which sprouting of mossy fiber collaterals
occurs. The new collaterals innervate processes in the
inner molecular layer, including granule cell
dendrites58. In hippocampal slices isolated from
pilocarpine-treated rats, BDNF enhanced responses
to stimulation of the mossy fiber collaterals that were
recorded in the inner molecular layer59 (Fig. 3b).
These effects were blocked by K252a, an inhibitor of
trk receptor activation, confirming a preferential
enhancement of mossy fiber synaptic transmission by
BDNF. BDNF immunoreactivity was intense in
sprouted mossy fibers, similar to the intensity of
normal mossy fibers59. In addition, BDNF exposure in
these epileptic animals led to seizure-like events,

suggesting that BDNF might be more potent after
seizures compared to normal tissue59. Consistent with
this interpretation are observations of heightened
seizure susceptibility, spontaneous seizures and
hyperexcitability of hippocampal field CA3 in
transgenic mice that overexpress BDNF (Ref. 50;
Fig. 3c).

Cellular model of BDNF-trkB interaction

The studies summarized above suggest that: (1)
upregulation of BDNF mRNA, protein and receptor
activation occurs during epileptogenesis; (2) this
upregulation is functionally relevant to increased
excitability; and (3) the hippocampus and closely
associated limbic structures might be particularly
important in the pro-epileptogenic effects of BDNF.
These observations suggest the following cellular and
molecular model of the actions of BDNF in promoting
excitability in the hippocampus (Fig. 4). BDNF
mRNA upregulation by seizure or perhaps by other
stimuli, such as ischemia or traumatic brain injury,
leads to increased BDNF production by the dentate
granule cells and increased anterograde transport
and release of BDNF from mossy fiber axons resulting
in activation of trkB receptors in the hilus and CA3
stratum lucidum. The locus of activation of trkB
receptors by released BDNF could be either pre- or
postsynaptic60,61. TrkB receptor activation could lead
to acute depolarization21, enhanced glutamate-
mediated synaptic transmission12,18 or reduced
inhibitory synaptic transmission13. These alterations
in synaptic transmission, either alone or in
combination with other changes (see below) could be
sufficiently long-lived to underlie a permanent
hyperexcitability of the hippocampal network, that is,
an epileptic state (Fig. 4).

Evidence implicating BDNF in the modulation of
synaptic transmission underlying epileptogenesis is
crucially dependent on whether such modulation
occurs in epileptic tissue. Several lines of evidence
suggest this is the case. First, BDNF expression is
increased in hippocampi of patients with temporal
lobe epilepsy62. Second, evidence for the modulation
of ionotropic receptors during epilepsy comes from
studies showing altered electrophysiology of dentate
granule cells in kindling63,64 and other animal
models65–67 and also in human epileptic tissue68.
Third, increased excitability of CA3 pyramidal cells
is observed in kindled animals, as indicated by
increased epileptiform bursting induced by elevated
K+ or lowered Mg2+ in isolated hippocampal
slices69,70. CA3 excitability is also present in other
animal models71. Fourth, tetanic stimulation of the
mossy fiber pathway in hippocampal slices (such as
might occur during a seizure) induces synaptic
potentiation onto CA3 pyramidal cells while
inducing depression onto stratum lucidum
interneurons72.

Modulation of multiple synaptic stations in the
limbic system probably contributes to
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Anterograde transport of BDNF in mossy fibers and
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↑  BDNF mRNA and protein

Seizure activity Ischemia StressTraumatic brain injury

TrkB receptor activation in hilus and
CA3 stratum lucidum

Effects on synaptic transmission

– Increased neurotransmitter
release

– Alteration of synaptic strengths

Morphoregulatory effects

– Axon and dendritic sprouting?

New synapse formation?

Hyperexcitable (epileptic) state

Fig. 4. Brain-derived neurotrophic factor (BDNF) mechanisms of epileptogenesis. Various stimuli
(e.g. seizure, ischemia, traumatic brain injury, stress) could lead to upregulation of BDNF mRNA and
protein in particular anatomic networks in the hippocampus, leading to long-lasting effects on
synaptic structure and function and ultimately to hyperexcitability.
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hyperexcitability following seizures. However, the
pivotal role of the CA3 pyramidal cells in promoting
epileptiform activity in the hippocampus; the role of
BDNF in hippocampal synaptic transmission; the
localization of seizure-induced trk receptor activation
in CA3 stratum lucidum57 and the fact that
constitutive and seizure-induced BDNF
immunoreactivity within the hippocampus is most
intense in the mossy fiber pathway23,26, suggest that
strengthening of the excitatory mossy fiber input
onto CA3 pyramidal cells might be a primary
mechanism by which BDNF promotes
epileptogenesis.

Other effects of BDNF

Based on the known effects of BDNF, it is possible
that trkB receptor activation could contribute to
epileptogenesis not only via synaptic effects on
excitability, but also by inducing changes in dendritic
or axonal sprouting, synaptic morphology and
synapse formation on a slower time scale. The most
prominent synaptic reorganization known to occur in
the epileptic brain is sprouting of the dentate granule
cell mossy fibers73. Interestingly, mossy fiber
sprouting was greater in BDNF+/− compared to wild-
type mice, in spite of kindling development being
inhibited in the mutants49. In addition, bath-applied
trkB-Fc failed to inhibit kainate-induced mossy fiber
sprouting in hippocampal explant cultures74.
Therefore, there is little evidence to date to suggest
that BDNF upregulation is responsible for synaptic
reorganization in the adult brain during
epileptogenesis.

BDNF is known to modulate the expression of
neurotransmitters and neuropeptides, many of which
potentially play a role in seizures. Perhaps the best
characterized of these is NPY. BDNF (but not NGF) is
known to increase NPY concentrations75. NPY is
thought to inhibit seizure generation, because NPY
knockout animals are more susceptible to seizure76.
Interestingly, both kindling and kainate-induced
seizures increase NPY immunoreactivity in the
mossy fibers45,77 in a distribution that is strikingly
similar to phospho-trk immunoreactivity. This
suggests that BDNF-induced trk activation could
lead to NPY upregulation in an overlapping
anatomical distribution, which might subsequently
limit excitability54.

Concluding remarks

Just over 10 years ago, Gall and Isackson2

discovered that limbic seizures upregulate the
mRNA encoding NGF. In the past decade, much has
been learned about the importance of NTs to
epileptogenesis. Although the expression of many
growth-related genes is altered by seizure activity,
the upregulation of BDNF and activation of trk
receptors appear to play a key role in the
development of hyperexcitability in vitro and in vivo,
in particular in the hippocampus via modulation of
mossy fiber–CA3 synapses. The precise downstream
effectors of BDNF and trkB responsible for
epileptogenesis, together with the potential for novel
anticonvulsant and anti-epileptogenic therapies,
provide fascinating and fundamental questions for
future study.
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