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Abstract
Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In par-
ticular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all 
been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes 
have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic 
epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic 
targets that are astrocyte-specific.
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Introduction

Epilepsy is a common neurological disorder characterized 
by the occurrence of unprovoked seizures. Epilepsy is a 
major public health problem, affecting more than 65 million 
people worldwide [1]. Healthcare cost estimates associated 
with epilepsy in the United States range from $9.6 billion to 
$12 billion per year [2]. Temporal lobe epilepsy (TLE) is the 
most common form of epilepsy with focal seizures and many 
patients with TLE develop refractory epilepsies that are 
pharmaco-resistant to currently available antiepileptic drugs 
(AEDs) [3, 4]. AEDs work primarily by targeting neurons 
through modulation of ion channels, enhancement of inhibi-
tory neurotransmission or attenuation of excitatory neuro-
transmission [5, 6]. Modulation of neurotransmission can 
consequently lead to dose-dependent “neurotoxic” adverse 

effects which are common undesired effects associated 
with AED usage. Adverse cognitive and behavioral effects 
of AEDs have been shown to lead to AED discontinuation 
in up to one-third of patients [7]. Moreover, current AEDs 
only dampen hyperexcitability but do not interfere with the 
epileptogenic process. Therefore, new non-neuronal targets 
that could potentially have fewer side effects and weaken 
the development of the disease should be considered and 
further investigated.

Epilepsy as an “Astrocytopathy”

Astrocytes play an established role in removal of glutamate 
at synapses and the sequestration and redistribution of  K+ 
and  H2O during neural activity [8–10] (Fig. 1). Many studies 
have shown that changes in astrocyte channels, transporters, 
and metabolism play a direct role in seizure susceptibility 
and the development of epilepsy [9, 11–17]. Stimulation of 
astrocytes leads to prolonged neuronal depolarization and 
epileptiform discharges [14]. Astrocytes release neuroac-
tive molecules and modulate synaptic transmission through 
modifications of channels, gap junctions, receptors, and 
transporters [9, 11, 14, 18–23]. In addition, striking changes 
in astrocyte form and function occur in epilepsy. Astrocytes 
adopt reactive morphology [12, 24], become uncoupled [25], 
and lose domain organization [26] in epileptic tissue. These 
and other changes such as changes in the expression of vari-
ous astrocytic enzymes, such as adenosine kinase [27] and 
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glutamine synthetase [28], astroglial proliferation, dysregu-
lation of water and ion channel and glutamate transporter 
expression [9, 29, 30], alterations in secretion of neuroactive 
molecules, and increased activation of inflammatory path-
ways [9, 12, 16, 24, 31–34] may all contribute to hyperex-
citability and epileptogenesis. Various forms of “astrocy-
topathy” (reactivity, remodeling, and deleterious alteration 
in function) have been implicated in neurological diseases 
other than epilepsy as well [35, 36].

Alterations in Astrocyte Channels, 
Transporters, and Enzymes

Kir Channels

During neuronal hyperactivity,  K+ released by active neu-
rons is thought to be primarily taken up by astrocytes. Any 
impairment of astrocyte  K+ uptake would be expected to 
be proconvulsant: in the hippocampus, millimolar and even 

submillimolar increases in extracellular  K+ concentra-
tion powerfully enhance epileptiform activity. A primary 
mechanism for  K+ reuptake is via glial inwardly rectifying 
 K+ channels  (Kir channels). Several studies have indicated 
downregulation of  Kir currents in specimens from patients 
with TLE. Using ion-sensitive microelectrodes, Heine-
mann’s group compared glial  Ba2+-sensitive  K+ uptake 
in the CA1 region of hippocampal slices obtained from 
patients with or without mesial temporal sclerosis (MTS) 
[34, 37].  Ba2+, a blocker of  Kir channels, augmented stim-
ulus-evoked  K+ elevation in non-sclerotic but not in scle-
rotic specimens, suggesting impairment in  K+ buffering 
in sclerotic tissue. Direct evidence for downregulation of 
 Kir currents in the sclerotic CA1 region of hippocampus 
came from a comparative patch-clamp study in which a 
reduction in astroglial  Kir currents was observed in scle-
rotic compared to non-sclerotic hippocampi [33]. These 
data indicate that dysfunction of astroglial  Kir channels 
could underlie impaired  K+ buffering and contribute to 
hyperexcitability in epileptic tissue [38].

Fig. 1  Astrocyte regulation of water, potassium, and glutamate home-
ostasis at the tripartite synapse. Colocalization of AQP4,  Kir4.1 and 
GLT1 in distinct astrocyte membrane domains (perisynaptic, perivas-
cular) provides the basis for a critical role of astrocytes in control of 

water, potassium, and glutamate homeostasis. Reproduced with per-
mission from: Benarroch E. 2007. Aquaporin-4, homeostasis, and 
neurologic disease. Neurology 69:2266–2268 (Fig. 1)
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Aquaporin‑4 Water Channels

Alterations in astroglial water regulation could also power-
fully affect excitability [9]. Brain tissue excitability is exqui-
sitely sensitive to osmolarity and the size of the extracellular 
space (ECS) [39]. Decreasing ECS volume produces hyper-
excitability and enhanced epileptiform activity; conversely, 
increasing ECS volume with hyperosmolar medium attenu-
ates epileptiform activity. These experimental data parallel 
extensive clinical experience indicating that hypo-osmolar 
states such as hyponatremia lower seizure threshold while 
hyperosmolar states elevate seizure threshold [40].

The aquaporins (AQPs) are a family of membrane pro-
teins that function as “water channels” in many cell types 
and tissues in which fluid transport is crucial [41]. Aqua-
porin-4 (AQP4) is expressed ubiquitously by glial cells, 
especially at specialized membrane domains including astro-
glial end feet in contact with blood vessels and astrocyte 
membranes that ensheathe glutamatergic synapses. Mice 
deficient in AQP4 have markedly decreased accumulation 
of brain water (cerebral edema) following water intoxication 
and focal cerebral ischemia [42] and impaired clearance of 
brain water in models of vasogenic edema [43], suggesting 
a functional role for AQP4 in brain water transport. In addi-
tion,  AQP4−/− mice show facilitated hippocampal  K+ spatial 
buffering [44] but impaired overall  K+ clearance and pro-
longed seizures in response to in vivo hippocampal stimula-
tion [45]. These data suggest that AQP4 downregulation may 
trigger hyperexcitability.

Alteration in the expression and subcellular localiza-
tion of AQP4 has been described in sclerotic hippocampi 
obtained from patients with MTS. Using immunohisto-
chemistry, rt-PCR and gene chip analysis, Lee et al. demon-
strated an overall increase in AQP4 expression in sclerotic 
hippocampi [46]. However, using quantitative immunogold 
electron microscopy, the same group found mislocalization 
of AQP4 in the human epileptic hippocampus, with reduc-
tion in perivascular membrane expression [47]. The authors 
hypothesized that the loss of perivascular AQP4 perturbs 
water flux, impairs  K+ buffering, and results in an increased 
propensity for seizures.

Subsequently, very similar AQP4 dysregulation has been 
confirmed in animal models of epilepsy. In particular, down-
regulation and/or mislocalization of AQP4 occur during the 
early epileptogenic phase in the rat pilocarpine [48, 49], rat 
kainic acid [50] and mouse kainic acid [29, 30] models of 
epilepsy. Based on these data, restoration of AQP4 homeo-
stasis may represent a novel antiepileptogenic strategy [9].

Glutamate Transport and Metabolism

Astrocytes are primarily responsible for glutamate uptake 
from the extracellular space via glutamate transporters. 

These are  Na+-dependent plasmalemmal transporters and 
as such are dependent on  Na+ concentration and  Na+ fluxes 
induced by activity [51]. Studies using mice with deletion 
[52] or antisense oligonucleotide-mediated inhibition of syn-
thesis [53] of the astroglial transporter GLT-1 (also called 
EAAT2) revealed that this subtype is responsible for the 
bulk of extracellular glutamate clearance in the brain [54]. 
Several studies have suggested an involvement of glutamate 
transporters in seizure development. GLT-1 knockout mice 
exhibit spontaneous seizures and hippocampal pathology 
resembling alterations in TLE patients with MTS [52]. 
A more recent follow-up paper by the same group using 
region-specific GLT-1 knockouts confirmed spontaneous 
seizures when GLT-1 was deleted from forebrain astrocytes 
[55].

What is the evidence for alteration in astrocyte gluta-
mate transporters in human epilepsy specimens and in ani-
mal models? Decreased GLT-1 immunoreactivity has been 
reported in the sclerotic human hippocampus, although 
GLAST immunoreactivity was reported as unchanged [56] 
or decreased [57]. These findings support the hypothesis that 
reduced or dysfunctional glial glutamate transporters in the 
hippocampus may trigger spontaneous seizures in patients 
with MTS [58]. In animal models, GLT-1 protein levels have 
been shown to be downregulated during the development 
of epilepsy. A study in the mouse intrahippocampal kainic 
acid model found a significant initial increase in hippocam-
pal GLT-1 immunoreactivity and protein levels 1 day after 
status epilepticus followed by a marked downregulation 
at 4 and 7 days post-status epilepticus, a time period dur-
ing which spontaneous seizures arise in this model [29]. A 
follow-up study by the same group found that synaptosomal 
GLT-1 levels, which include components of the tripartite 
synapse, are also reduced by nearly 80% 1 week following 
intrahippocampal kainate-induced SE [59]. Another group 
also found that perisynaptic GLT-1 at the plasma membrane 
in astrocytes is significantly reduced around CA3-CA1 syn-
apses during the latent period following systemic kainate-
induced status epilepticus (SE) [60]. Together, these data 
suggest that reduction of the pool of GLT-1 transporters 
available for glutamate uptake at excitatory synapses may 
precede spontaneous seizures and contribute to epileptogen-
esis. The therapeutic potential of GLT-1 upregulation in epi-
lepsy remains to be fully investigated.

Another potential mechanism for glutamate dysregulation 
is loss of the astrocyte enzyme glutamine synthetase (GS) in 
the sclerotic vs. non-sclerotic hippocampus of TLE patients 
[61]. After uptake of glutamate into astrocytes, this enzyme 
rapidly converts glutamate into glutamine. In sclerotic TLE 
hippocampus, downregulation of GS causes slowing of the 
glutamate-glutamine cycling and accumulation of glutamate 
in astrocytes and in the extracellular space [61, 62]. In ani-
mal models, inhibition of GS via methionine sulfoximine 
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(MSO) infusion [63] or genetic targeting [64] is sufficient 
for epileptogenesis. Thus, modulation of GS may represent 
another antiepileptogenic target [65].

Gap Junctions

Functional coupling analysis, obtained by patch-clamping 
astrocytes and filling the astrocyte syncytium with a tracer to 
quantitatively measure astrocyte-astrocyte gap junction cou-
pling, has led to recent seminal findings of astrocyte “uncou-
pling” in human and animal TLE [25]. In this study, the gap 
junctional connectivity of astrocytes from 119 specimens 
from patients with mesial TLE (MTLE) with and without 
sclerosis were examined. In MTLE specimens with typi-
cal hippocampal sclerosis, there is a complete absence of 
typical “classical” astrocytes and astrocyte gap junctional 
coupling. In contrast, coupled astrocytes were abundant in 
non-sclerotic hippocampus. In the intracortical kainic acid 
model of TLE, mice exhibited decreased astrocytic coupling 
already 4 h post-injection in the ipsilateral hippocampus, 
accompanied by impaired  K+ clearance, and completely 
lacked coupling 3 and 6 months after status epilepticus [25]. 
In the contralateral, non-sclerotic hippocampus, however, 
coupling remained intact. Interestingly, decreased astrocyte 
coupling preceded apoptotic neuronal death and the onset 
of spontaneous seizures. The authors found that pro-inflam-
matory cytokines induced the uncoupling of hippocampal 
astrocytes in vivo [25], which agreed with similar in vitro 
findings that proinflammatory cytokines have an inhibitory 
effect on astrocytic gap junctional coupling [66]. Their data 
suggest that inflammation may contribute to rapid uncou-
pling of astrocytes and the loss of coupling of astrocytes may 
be involved in, or even initiate, epileptogenesis. Notably, 
lack of astrocytic coupling was not due to loss of gap junc-
tion proteins because unchanged or even increased levels 
of Cx43 and Cx30 were found in both human and mouse 
chronic sclerotic hippocampi [67].

How general is the mechanism of astrocytic uncoupling 
for other forms of epilepsy? In a follow-up paper from the 
same group, uncoupling of astrocytes was also observed 
in a febrile seizure model [68]. Furthermore, constitutive 
deletion of astrocytic connexins aggravates kainate-induced 
epilepsy [69]. This body of work suggests that prevention of 
uncoupling or restoration of gap junctional coupling in astro-
cytes, perhaps via modulation of the TLR4 pathway, may 
represent a novel anti-epileptogenic therapeutic strategy.

Adenosine

Adenosine exerts a powerful inhibitory effect on excita-
tory synaptic transmission primarily through its interaction 
with presynaptic  A1 adenosine receptors  (A1Rs) to sup-
press neurotransmitter release. Once released from neurons 

and astrocytes, ATP is rapidly converted into adenosine 
monophosphate (AMP) and then into adenosine by extra-
cellular nucleotidases. The reuptake of adenosine occurs 
through equilibrative nucleoside transporters, and phospho-
rylation by the astrocyte-specific enzyme adenosine kinase 
(ADK) breaks down adenosine and therefore clears excess 
adenosine from the extracellular space. Therefore, altera-
tions in ADK are especially relevant to the generation of 
seizures. Increased ADK expression has been linked to sei-
zure activity in both human tissue and experimental models 
of epilepsy [27, 70–72].

Collectively, the above findings support the ADK hypoth-
esis of epileptogenesis [70, 71], including the dysregulation 
of ADK and its contribution to the epileptogenic cascade. 
Adenosine, adenosine receptor agonists, and ADK inhibi-
tors have well established anticonvulsant efficacy [73–76]. 
Intracranial injection of adenosine prevents seizures in rats 
[77]. In addition, the use of transgenic mice revealed that 
reduced forebrain ADK protects against epileptogenesis 
[78]. Other studies involving adenosine augmentation thera-
pies include a silk protein-based release system for adeno-
sine [79] and the local release of adenosine from grafted 
cells [80], both of which resulted in seizure suppression. 
Focal adenosine delivery, such as slow-release polymers, 
cellular implants, gene therapy, or pump systems, has been 
suggested as a new pharmacological tool to treat refractory 
epilepsy with minimal side effects [81].

Particularly exciting is the recent finding that even a 
transient adenosine augmentation may have longer-lasting 
epigenetic effects that are antiepileptogenic [82, 83]. Prob-
ably the most effective treatment would be a brain-permeant 
peripherally-administered small molecule inhibitor of 
ADK. This would potentially obviate systemic side effects 
observed with direct adenosine delivery. If effective in trig-
gering long-lasting antiepileptogenesis, such a drug would 
ideally need to be given only during an isolated therapeutic 
window just after an epileptogenic stimulus.

Examples of Astrocyte Dysfunction in Other 
Specific Epilepsy Syndromes

Tuberous Sclerosis

Tuberous sclerosis (TS) is a multisystem genetic disorder 
resulting from autosomal dominant mutations of either the 
TSC1 or TSC2 genes. The TSC1 gene encodes the protein 
hamartin and TSC2 encodes tuberin, which are thought to 
be regulators of cell signaling and growth. Epilepsy occurs 
in 80–90% of cases of TS, frequently involves multiple sei-
zure types and is often medically refractory. Cortical tubers 
represent the pathologic substrate of TS, and microscopi-
cally consist of a specific type of dysplastic lesion with 
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astrocytosis and abnormal giant cells. While this suggests 
that astrocytes are involved in the pathologic lesion, in itself 
this is not evidence for a causative role of astrocytes in TS 
epileptogenesis. However, evidence using astrocyte-specific 
TSC1 conditional knockout mice has provided insight into a 
potential role of astrocytes in the etiology of TS. These mice, 
which have conditional inactivation of the TSC1 gene in 
GFAP-expressing cells (Tsc1GFAPcKO mice), develop severe 
spontaneous seizures by 2 months of age and die prema-
turely [84]. Intriguingly, the time point of onset of sponta-
neous seizures in these mice is concordant with increased 
astroglial proliferation. Furthermore, two functions of 
astrocytes—glutamate and  K+ reuptake—are impaired in 
these mice. These mice display reduced expression of the 
astrocyte glutamate transporters GLT-1 and GLAST [85]. In 
addition, astrocytes from Tsc1GFAPcKO mice exhibit reduced 
 Kir channel activity, and hippocampal slices from these mice 
demonstrated increased sensitivity to  K+-induced epilepti-
form activity [86]. A more recent inducible Tsc1 knockout 
mouse in which Tsc1 gene inactivation in GFAP-expressing 
cells was done at 2 weeks of age was sufficient to cause 
astrogliosis and mild epilepsy (but the phenotype was less 
severe than prenatal Tsc1 gene activation) [87]. Together, 
these studies demonstrate that in this model, changes in glial 
properties may be a direct cause of epileptogenesis.

Tumor‑Associated Epilepsy

Tumor-associated epilepsy is an important clinical problem, 
seen in approximately one-third of tumors. Surgical removal 
of tumors usually results in seizure control, but many tumors 
cannot safely be resected, and tumor-associated seizures are 
often resistant to anticonvulsant therapy. Classic epilepsy-
associated brain tumors include astrocytoma, oligodendro-
glioma, ganglioglioma, dysembryoplastic neuroepithelial 
tumor, and pleomorphic xanthoastrocytoma [88]. Microdi-
alysis studies of gliomas have revealed reduced glutamate 
in the tumor compared to peri-tumoral tissue [89]. A “glu-
tamate hypothesis” of tumor-associated epilepsy has been 
advanced which suggests that tumors excite surrounding 
tissue by glutamate overstimulation. Two lines of evidence 
are relevant to this hypothesis. First, the glutamate recep-
tor subunit GluR2 has been found to be underedited at the 
Q/R site in gliomas, which would increase AMPA receptor 
 Ca+2 permeability and potentially result in increased glu-
tamate release by glioma cells [90]. Second, Sontheimer’s 
group found that glioma cells release larger than normal 
amounts of glutamate in vitro [91]. The release of glutamate 
was accompanied by a marked deficit in  Na+-dependent 
glutamate uptake, reduced expression of astrocytic gluta-
mate transporters, and upregulation of cystine-glutamate 
exchange [92]. Hence, glioma cell glutamate release at the 
margins of the tumor may initiate seizures in peritumoral 

neurons. A distinct potential mechanism underlying tumor-
associated epilepsy is altered  K+ homeostasis. In support of 
this hypothesis, both reduced  Kir currents [93] and mislocali-
zation of  Kir4.1 channels [94] have been found in malignant 
astrocytes. Recent studies have shown that a hypothesized 
glutamate release pathway, cysteine-glutamate transporter 
(SXC), is active in a subset of gliomas [95]. SLC7A11/
xCT, the catalytic subunit of SXC, demonstrated elevated 
expression in about 50% of patient tumors. Compared with 
tumors lacking this transporter, SLC7A11-positive tumors 
were associated with faster growth, peritumoral glutamate 
excitotoxicity, seizures, and decreased survival. In a trans-
lational pilot study, use of the FDA-approved SXC inhibi-
tor sulfasalazine in nine patients with biopsy-proven SXC 
expression led to inhibition of glutamate release from the 
tumor in vivo as assessed by magnetic resonance (MR) spec-
troscopy [95]. This exciting study demonstrates that phe-
notyping tumors for glial-associated transport molecules 
will lead to selective pharmacological targeting to prevent 
or ameliorate tumor-associated epilepsy, and addresses the 
pathologic mechanism of glutamate release from tumor cells 
rather than standard antiepileptic drug approaches of glob-
ally suppressing synaptic transmission.

Post‑Traumatic Epilepsy

Post-traumatic epilepsy (PTE) refers to a recurrent seizure 
disorder caused by traumatic brain injury (TBI). PTE devel-
ops in a variable proportion of TBI survivors depending on 
the severity of the injury and the time after injury [96, 97]. 
Anticonvulsant prophylaxis is ineffective at preventing the 
occurrence of late seizures [98–100]. Various animal models 
of PTE have demonstrated characteristic structural and func-
tional changes in the hippocampus, such as death of dentate 
hilar neurons and mossy fiber sprouting [101–103]. Earlier 
studies have also implicated altered astrocyte function in 
PTE models. Recordings from glial cells in hippocampal 
slices 2 days after fluid-percussion injury demonstrated 
reduction in transient outward and inward  K+ currents, and 
antidromic stimulation of CA3 led to abnormal extracellu-
lar  K+ accumulation in post-traumatic slices compared to 
controls [104]. This was accompanied by the appearance 
of electrical after discharges in CA3. This study suggests 
impaired  K+ homeostasis in posttraumatic hippocampal 
glia. Another study demonstrated reduction in expression 
of the astrocyte glutamate transporter GLT-1 in a PTE model 
induced by intracortical ferrous chloride injection, suggest-
ing impaired glutamate transport [105]. Further studies of 
the role of glial cells in PTE appear warranted now that reli-
able PTE animal models have been developed [106, 107]. 
In particular, long-term changes in astrocyte channels and 
transporters after TBI that may correlate with PTE should be 
investigated. Interestingly, the latter study found that AQP4 



2692 Neurochemical Research (2021) 46:2687–2695

1 3

was selectively mislocalized in mice that developed PTE 
after TBI [107].

Since TBI is associated with breakdown of the blood-
brain barrier (BBB) at the time of the initial event, studies of 
BBB disruption-induced epileptogenesis are also relevant to 
mechanisms of PTE. Indeed, transient opening of the BBB is 
sufficient for focal epileptogenesis [108]. Extravasated albu-
min can be taken up by astrocytes which activates the trans-
forming growth factor-β (TGF-β) pathway leading to focal 
epileptogenesis [109]. This mechanism provides an astro-
cytic basis for BBB disruption-induced epileptogenesis and 
suggests antiepileptogenic therapeutic approaches (TGF-β 
inhibition). Indeed, losartan, a TGF-β inhibitor and FDA-
approved antihypertensive medication, was found to exert 
antiepileptogenic effects in these BBB disruption models 
[110, 111]. It will be of interest in the future to test similar 
strategies in PTE models for antiepileptogenic efficacy.

Conclusions

An understanding of the various structural and functional 
changes in astrocytes that occur during epileptogenesis is 
gradually emerging. Based on the role of astrocytes in  K+, 
glutamate, and water homeostasis at the synapse (Fig. 1), 
alterations of these and closely related metabolic mecha-
nisms could lead to multiple astrocytic sources of hyperex-
citability [112].

While animal models and human tissue studies have dem-
onstrated astrocytic involvement in epilepsy, both levels of 
investigation have certain limitations. Animal studies may 
not accurately represent the disease progression as seen in 
humans; there are many forms of epilepsy in both animals 
and humans; and human tissue obtained from resected speci-
mens does not allow determination whether observed cel-
lular and molecular changes are a cause or a consequence 
of epilepsy. Future studies should focus on characterizing 
astrocyte alterations that occur prior to spontaneous seizure 
onset (i.e. during early epileptogenesis) in distinct models 
of epilepsy, as this could lead to a greater understanding 
of disease pathogenesis. The term “reactive gliosis” is too 
descriptive and should be replaced by careful morphologi-
cal, biochemical, and electrophysiological studies of identi-
fied glial cell subtypes in human tissue and animal mod-
els, paying particular attention to astrocyte heterogeneity 
[113–115]. In addition to changes in preexisting glial cell 
populations, newly-generated glial cells with distinct proper-
ties may contribute to enhanced seizure susceptibility [116, 
117]. The available data likely represent only the “tip of the 
iceberg” in terms of the functional role of astroglial cells 
in epilepsy (for more information please see [118]). Fur-
ther study of astrocyte alterations in epilepsy should open 

new avenues for the development of anti-epileptogenic, i.e. 
disease-modifying therapies.
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