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Abstract
Area II of the 2014 Epilepsy Research Benchmarks aims to establish goals for preventing the development and progression of
epilepsy. In this review, we will highlight key advances in Area II since the last summary of research progress and opportunities was
published in 2016. We also highlight areas of investigation that began to develop before 2016 and in which additional progress has
been made more recently.
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Introductory Vignette by Shelly Meitzler. Can
Epilepsy Be Prevented?

Two of my 3 children have tuberous sclerosis complex (TSC).

Ashlin is 18 and Mason is 6. Because of recent research dis-

coveries, their hopes for the future are entirely different.

Ashlin experienced her first seizure at 4 months old and, 4

agonizing weeks later, TSC was confirmed as her diagnosis. I

felt defeated as multiple seizures, hospitalizations, life flights,

countless failed medications, and endless testing dictated daily

life. Status epilepticus when Ashlin was two and a half years

old ripped away a piece of my child forever. She came home
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after a 10-day hospital stay with right-sided paralysis, no voca-

bulary, the inability to feed herself, sit up, crawl, or walk. She

sees 10 different specialists, receives in-home therapy 5 days a

week, will require assisted care for the duration of her life, and

takes 18 doses of 7 different medications to treat the varying

manifestations of TSC.

Mason was diagnosed with TSC at 7 months old. He was

promptly enrolled in a research study at Boston Children’s

Hospital, which has been invaluable to Mason’s developmental

progress. When his infantile spasms began, vigabatrin was

started within 6 days, and we’ve not seen an infantile spasm

since. Mason experienced status epilepticus in March 2015 and

required so much rescue medication, a code blue was called to

resuscitate him. Fortunately, he recovered with no major

setbacks.

Over the past 18 years, I’ve witnessed so much progress and,

because of additional options now available, I have so much

more hope for Mason’s future. While the TSC community is

grateful for current treatment options, they do not work for

everyone, and the long-term need is to prevent manifestations

before onset. We have made huge progress in terms of research

and new treatments, but we have more work to do and more

answers to find.

Shelly Meitzler of Tuberous Sclerosis Alliance

Introduction

Area II of the 2014 Epilepsy Research Benchmarks aimed to

establish goals for preventing the development and progression

of epilepsy. In this review, we will highlight some key

advances in Area II since the last summary of research progress

and opportunities in this area was published in 20161 as well as

some areas of investigation that began to develop before 2016

and in which additional progress has been made more recently.

New Insights into Mechanisms and
Modulators of Acquired Epileptogenesis

In the following sections, we summarize 3 themes in research

in antiepileptogenic mechanisms: metabolic mechanisms, epi-

genetic mechanisms, and astrocyte-specific processes that

influence epileptogenesis.

Metabolic Mechanisms

The role of metabolism is an emerging area of epilepsy

research. In addition to epilepsy being the direct consequence

of pathogenic variants in genes encoding proteins in epilepsy

disorders, such as in glucose transporter type 1 deficiency syn-

dromes,2 it has been shown that maladaptive changes in meta-

bolism contribute to epilepsy development.3 Conversely,

metabolic therapeutic approaches, such as the ketogenic diet

(KD), have been shown (1) to influence the epigenome and (2)

to prevent epileptogenesis.4-8 The KD suppresses seizures in

some patients, reflecting the antiepileptic effects of specific

metabolic changes.4,6,9 Mechanisms underlying the success

of the KD are the subject of intense research efforts. Dietary

compliance is difficult for many individuals on the KD, and

lack of complete adherence to this diet can obviate the potential

benefits of treatment. Some recent studies have focused on the

specific effects of medium-chain triglycerides, both as a com-

ponent of the KD9 and independently10 on both metabolic and

antiepileptic effects. Others have suggested that effects of

ketone bodies themselves on mitochondrial metabolism may

underlie antiseizure effects of the KD, for example, in Kcna1-

null mice.11 There has been recent progress toward understand-

ing some of the mechanisms of action of the KD, such as

AMPA receptor inhibition.12 In parallel, there are efforts to

include modifications in the diet to make it more tolerable for

people with epilepsy.13

Traditional antiseizure medication screening has been

largely biased toward transmembrane channels and receptors,

yet intracellular proteins and enzymes may represent appropri-

ate therapeutic targets. Recently, several studies have emerged

demonstrating proof-of-principle for metabolic targets as novel

antiseizure medications or antiepileptogenic drugs. One study

used a novel screening platform involving in vivo bioenergetics

screening assays to uncover therapeutic agents that improve

mitochondrial health; using an 870-compound screen in

kcna1-morpholino zebrafish larvae, vorinostat (an histone dea-

cetylase [HDAC] inhibitor) was uncovered as a potent antisei-

zure agent.14 This study provides proof-of-principle for

metabolism-based experimental therapeutics in epilepsy. Simi-

larly, a study of glucose metabolism in SCN1Lab mutant zebra-

fish (a model of Dravet syndrome, DS) identified a decrease in

baseline glycolytic rate and oxygen consumption rate which

was rescued by KD, suggesting that mitochondrial hypometa-

bolism contributes to the pathophysiology of DS.15 Inhibition

of lactate dehydrogenase (LDH), a component of the astrocyte-

neuron lactate shuttle, hyperpolarized neurons and suppressed

seizures in vivo indicating that LDH inhibition may represent a

promising antiepileptic target.16 Together, the above and other

studies indicate that as our knowledge of specific metabolic

manipulations deepens, novel antiepileptic targets for various

types of acquired epilepsy are likely to emerge.17,18 Various

dietary or pharmacological therapies may also modify the gut

microbiome,19-21 which may have indirect effects on brain

excitability. Indeed, “dysbiosis” may underlie some forms of

drug-resistant epilepsy,22 and a more systemic or “metabolic”

viewpoint should be adopted to attempt to develop novel anti-

epileptogenic strategies that may initially seem “far from the

synapse.” This area requires more investigation to determine

whether there will be evidence to support some of the novel

hypotheses related to the microbiome.

Epigenetic Mechanisms

The role of histone modification in contributing to various

neurological diseases including epilepsy is under intense study.

Modification of chromatin structure has been implicated in

learning, memory, and synaptic plasticity; and recent studies

suggest translational relevance to epilepsy. For example, in a
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mouse model of tuberous sclerosis complex (TSC), decreased

hippocampal histone H3 acetylation levels were observed;

HDAC inhibition restored histone H3 acetylation, normalized

synaptic plasticity, and suppressed seizures.23 Interestingly,

daily treatment with the HDAC inhibitor sodium butyrate

inhibited hippocampal kindling epileptogenesis.24 Other mouse

models of temporal lobe epilepsy (TLE), such as the kainic acid

and pilocarpine models, also demonstrate altered histone acet-

ylation, HDAC expression, and DNA methylation.5,25-27

Beyond mouse models of epilepsy, another approach is to

obtain surgically resected brain tissue from patients with

drug-resistant epilepsy and perform genome-wide CpG-DNA

methylation profiling to evaluate for specific epigenetic signa-

tures. In one study using this approach, tissue from a patient

with focal cortical dysplasia type II was found to demonstrate

an epigenetic signature that identified candidate genes and

pathways involved in pathogenesis.28 Similarly, methylation

analysis reveals specific profiles of TLE with or without hip-

pocampal sclerosis,29 and increased expression of DNA

methyltransferases has been observed in human TLE.30 Inves-

tigators have also tested the ability of induced epigenetic mod-

ification to prevent epileptogenesis. The endogenous

anticonvulsant adenosine causes DNA hypomethylation by

biochemical interference with the transmethylation pathway,

and adenosine and/or adenosine kinase inhibition inhibits epi-

leptogenesis in multiple seizure models.31,32 Thus, pathological

changes in DNA methylation may underlie certain forms of

epileptogenesis, and reversal of these epigenetic changes may

represent a key antiepileptogenic strategy. The currently used

antiepileptic drug valproic acid is also known to be an HDAC

inhibitor,33 and its effects could be compared to some of the

novel strategies that emerge in this area. Overall, the above

studies suggest a role for chromatin modification in various

forms of epilepsy, suggesting novel therapeutic strategies

focused on normalizing chromatin structure. Profiling specific

pathogenic epigenetic modifications may eventually allow

more personalized approaches to treatment for specific epi-

lepsy syndromes.

Astrocyte-Mediated Mechanisms

Astrocytes play an established role in removal of glutamate at

synapses and the sequestration and redistribution of Kþ and

H2O during neural activity. It is becoming increasingly clear

that changes in astrocyte channels, transporters, and metabo-

lism play a direct role in seizure susceptibility and the devel-

opment of epilepsy.34 Stimulation of astrocytes leads to

prolonged neuronal depolarization and epileptiform dis-

charges.35 Astrocytes release neuroactive molecules and mod-

ulate synaptic transmission through modifications in channels,

gap junctions, receptors, and transporters. Further, striking

changes in astrocyte form and function occur in epilepsy.

Astrocytes adopt reactive morphology, become uncoupled, and

lose domain organization in epileptic tissue. These and other

changes—such as changes in the expression of the astrocytic

enzymes adenosine kinase and glutamine synthetase, astroglial

proliferation, dysregulation of ion channel and glutamate trans-

porter expression, alterations in secretion of neuroactive mole-

cules, increased activation of inflammatory pathways, and

aberrant activation of mammalian target of rapamycin (mTOR)

signaling—may all contribute to hyperexcitability and

epileptogenesis.36

Two specific examples of astrocyte involvement in epilep-

togenesis include:

1. Tuberous sclerosis complex: Evidence using astrocyte-

specific Tsc1 conditional knockout mice (mice in which

the gene is knocked out only in astrocytes) has provided

insight into a potential role of astrocytes in the etiology

of TSC. These Tsc1GFAPcKO mice develop severe

spontaneous seizures by 2 months of age and die pre-

maturely.37 The time of onset of spontaneous seizures

in these mice is concordant with increased astroglial

proliferation. Further, 2 functions of astrocytes—gluta-

mate and Kþ reuptake—are impaired in these mice,

which also display reduced expression of the astrocyte

glutamate transporters GLT1 and GLAST.38 In addi-

tion, recent evidence indicates that astrocytes from

Tsc1GFAPcKO mice exhibit reduced activity of inwardly

rectifying Kþ channels, and hippocampal slices from

these mice demonstrated increased sensitivity to Kþ-

induced epileptiform activity.39 A more recent inducible

Tsc1 knockout mouse in which Tsc1 gene inactivation in

GFAP-expressing cells was induced at 2 weeks of age

was sufficient to cause astrogliosis and mild epilepsy

(with a less severe phenotype than with prenatal Tsc1

gene inactivation).40 Together, these studies demon-

strate that in this model, changes in glial properties may

be a direct cause of epileptogenesis.

2. Posttraumatic epilepsy: Posttraumatic epilepsy (PTE)

refers to a recurrent seizure disorder whose cause is

traumatic brain injury (TBI). Posttraumatic epilepsy

develops in a variable proportion of TBI survivors

depending on the severity of the injury and the time

after injury.41,42 Antiseizure medication prophylaxis is

ineffective at preventing the occurrence of late sei-

zures.43-45 Various animal models of PTE have demon-

strated characteristic structural and functional changes

in the hippocampus, such as death of dentate hilar neu-

rons, increased dentate granule cell neurogenesis,

mossy fiber sprouting, synaptic reorganization of den-

tate granule cells and CA3 pyramidal cells, and altered

g-aminobutyric acid receptor signaling.46-53 Studies

have also implicated altered astrocyte function in PTE

models, including impaired Kþ homeostasis in post-

traumatic hippocampal glia54 and impaired astrocyte

glutamate transport in a PTE model induced by intra-

cortical ferrous chloride injection.55 Further studies of

the role of glial cells appear warranted with advances in

the past decade on PTE animal models.56 In particular,

long-term changes in astrocyte channels and transpor-

ters after TBI that may correlate with PTE should be
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investigated. Recently, new models of repetitive diffuse

mild closed-head TBI in mice have been described that

are sufficient to cause PTE;57,58 interestingly, in one

study classic astrogliosis was limited but a population

of atypical reactive astrocytes was identified that corre-

lated with the subset of mice that developed PTE.58

This new study suggests that, in addition to well-

described neuronal dysfunction, astrocyte morphologi-

cal, structural, functional, and molecular changes may

contribute to or underlie PTE.

Since TBI is associated with breakdown of the blood–brain

barrier (BBB) at the time of the initial event, studies of BBB

disruption-induced epileptogenesis are also relevant to

mechanisms of PTE. Indeed, transient opening of the BBB is

sufficient for focal epileptogenesis.59 Extravasated albumin

can be taken up by astrocytes, which activates the transforming

growth factor-b (TGF-b) pathway leading to focal epileptogen-

esis and excitatory synaptogenesis through astrocyte TGF-b/

ALK5 signaling.60 This mechanism provides an astrocytic

basis for BBB disruption-induced epileptogenesis and suggests

antiepileptogenic therapeutic approaches (TGF-b inhibition).

Indeed, TGF-b inhibition through treatment with losartan, an

angiotensin-II receptor antagonist and Food and Drug Admin-

istration (FDA)-approved antihypertensive medication, was

found to exert antiepileptogenic effects in these BBB disrup-

tion models.61-63 It will be of interest in the future to test similar

strategies in PTE models for antiepileptogenic efficacy.

New Targets/Opportunities for
Antiepileptogenic Therapies

Repurposing of FDA-Approved Drugs

Current antiseizure medications have several shortcomings:

both in terms of efficacy, failing to control seizures in about

one-third of cases, and tolerability, with many associated with

adverse cognitive, behavioral, or other side effects. Repurpos-

ing of existing FDA-approved drugs to treat epilepsy and/or

epilepsy-associated comorbidities may offer some advantages.

First, there would be savings in time and cost of drug devel-

opment. Second, the risk profile of an FDA-approved drug may

already be understood and may be very different than current

antiseizure medications. Third, existing drugs may be targeted

based on specific aspects of cellular or network dysfunction

that occur in epilepsy. Several recent studies have proposed

such an approach.64,65 Combinations of therapies can be tested

for antiepileptogenic or disease-modifying efficacy in animal

models. Another approach is to use extensive literature

searches to mine data and create databases of FDA-approved

drugs with published efficacy in animal models of epilepsy.

Such an effort recently led to a database identifying 173 drugs

as potentially appropriate for repurposing.64 Another approach

is to take a disease-based screening approach based on a spe-

cific assay. For example, a fluorescence-based sodium flux

assay for inhibitory activity in a SCN8A R1872Q mutant cell

line identified 4 FDA-approved candidate drugs for SCN8A-

related epilepsy.66

Based on the above considerations, we see as research prio-

rities (1) the identification of mechanisms through which exist-

ing FDA-approved drugs affect epileptogenesis and (2) the

study of existing FDA-approved drugs in a range of cellular

and animal models of epileptogenesis. For example, existing

immunomodulatory drugs used for multiple sclerosis may have

unexplored antiepileptogenic potential and could be repur-

posed for epilepsy prevention. Fingolimod, which targets

sphingosine-phosphate receptors, was found to have antiepilep-

togenic and anticonvulsant effects in the intrahippocampal kai-

nic acid murine model.67 Antiepileptogenic and

immunomodulatory effects of some statins are another

example.68

While animal model studies remain crucial, are there any

clinical success stories of FDA-approved drug repurposing for

epilepsy? After being used off label to treat patients with epi-

lepsy for nearly 3 decades,69 fenfluramine has recently com-

pleted 2 successful phase 3 clinical trials in DS and represents

one of the most visible case of drug repurposing in epi-

lepsy.70,71 Personalized medicine studies in newly described

genetic epilepsy syndromes might uncover additional opportu-

nities to use existing drugs. This approach has been tried with

the drug quinidine for epilepsy due to gain-of-function in the

potassium channel gene KCNT1, although efficacy remains

controversial.72 On a cautionary note, while repurposing is a

widely pursued strategy for neurological conditions, there are

challenges in final translation to humans due to differences in

delivery and efficacy when moving, for example, from mouse

to human, and due to the realities of paying for phase III clin-

ical trials for medications that either lack new chemical-entity

patents and/or are already on the market in generic forms.73

Gene Therapy

Gene therapy involves the induced expression of a therapeutic

gene or manipulation of gene expression in a target tissue to

alter cellular and tissue and (ideally) disease phenotype. Vari-

ous investigations have explored the idea of gene therapy for

epilepsy to provide an alternative therapeutic option as many

forms of epilepsy are difficult to treat with conventional drugs.

Viral vector-mediated gene therapy offers the opportunity to

target specific mechanisms and cellular populations. These

efforts to date have largely focused on preclinical studies, with

delivery of various genes into animal models of epilepsy,74-77

although it was realized long ago that the viral vector approach

may also apply to human epileptic tissue.78,79 Genes for which

positive effects from this approach have been reported in ani-

mal models of epilepsy include HSP72,80 aspartoacylase,81

GDNF,82 NPY,83-87 KCNA1,88 and adenosine kinase.89 A dis-

tinct approach transduces genes with engineered channels, such

as an engineered glutamate-gated chloride channel eGluCl90 or

an engineered potassium channel.91 Of course, for clinical

translation the viruses must accurately target the right
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populations of human cells.92 A roadmap from gene therapy in

animal models to clinical trials has been proposed.93,94

The strongest rationale for gene therapy approaches is that

there is little or nothing in sight for disease prevention or miti-

gation for certain intractable forms of epilepsy, both for sei-

zures as well as cognitive and other severe comorbidities. For

these epilepsy syndromes, we often know the gene as the start-

ing point. There are multiple programs ongoing with the poten-

tial to be disease modifying in some forms of epilepsy, which

are likely to start clinical trials around 2020, such as an anti-

sense oligonucleotide approach for the treatment of DS (Stoke

Therapeutics, Bedford, MA), enzyme-replacement therapy

using adeno-associated virus (AAV) vectors for CDKL5 defi-

ciency disorder (Ultragenyx, Novato, CA), and delivering NPY

and Y2 receptors through an AAV approach (CombiGene,

Lund, Sweden). With the development of better approaches for

vector-mediated gene transfer to the central nervous system

(CNS), we are likely to see new opportunities for the treatment

of various epilepsies. Recent success in single-gene replace-

ment therapy for spinal muscular atrophy type 195 provides

hope in this arena.74

Clinical Trials for Epilepsy Prevention

Ultimately the goal of appropriate target identification for anti-

epileptogenic and/or disease-modifying therapy is translation

to clinical trials for epilepsy prevention or modification. Sev-

eral aspects of this process will need to be assessed for each

type of epilepsy:

1. Identification of clinical target populations: Which

populations would be the most appropriate for antiepi-

leptogenic therapy trials? One category would be

genetic neurodevelopmental conditions with a latency

between clinical recognition of an abnormality and

gene diagnosis to epilepsy onset (eg, TSC). Another

category would be secondary (acquired) epilepsies with

known cause and a delay between the initial event that

places an individual at risk for epilepsy and the presen-

tation with epilepsy. Clinical target populations in this

category may include patients with PTE, poststroke

epilepsy, or postinfectious epilepsy, which is an impor-

tant cause of epilepsy in the developing world. In these

situations, there is a window of opportunity between the

inciting stimulus and the development of epilepsy dur-

ing which one could theoretically intervene to prevent

the development of epilepsy. This is in contradistinc-

tion to other secondary causes of epilepsy, such as

tumor-associated epilepsy, which may present with sei-

zures at the time of diagnosis or not be diagnosed in

time for any epilepsy-modifying therapy. In contrast, in

the case of PTE, even if the initiating traumatic event is

well documented, a challenge may be that the actual

development of PTE may occur many years after the

initial injury, making enrollment and follow-up for anti-

epileptogenic efficacy studies difficult.

2. Identification of high-value therapeutic targets: Precli-

nical research in appropriate animal models offers the

capability of identifying and validating new therapeutic

targets, both through mechanistic understanding and

insights from research using repurposed FDA-

approved drugs. Human genetics, meanwhile, continues

to advance as a resource to identify and validate targets.

Emerging computational tools are also being developed

to help combine preclinical and clinical data into a

framework to identify drug targets96 and also to help

predict the safety and efficacy of new targets.97 As new

targets are identified and validated, clinical interven-

tional trials can be designed accordingly with either

repurposed medications or new drugs.

3. Stratification with biomarkers: Stratification of clinical

populations with biomarkers that predict epilepsy

severity or even the potential for epilepsy to develop

(as in assessing the risk of PTE after head trauma) will

be important for many reasons, including the notion that

trials designed to prevent epilepsy after high-risk expo-

sures such as trauma, stroke, or cerebral infection would

likely expose people without epilepsy to the effects of

antiseizure medications. Careful study of natural history

of certain conditions as well as predictive factors that

incorporate well-defined and reliable biomarkers of risk

of epilepsy or of disease progression will be required

before preventive studies can be undertaken. Biomar-

kers can include susceptibility/risk biomarkers, diag-

nostic biomarkers, monitoring biomarkers, prognostic/

predictive biomarkers, pharmacodynamics/response

biomarkers, and safety biomarkers.98 Each category

may have distinct types of biomarkers (eg, serological,

cerebrospinal fluid, brain tissue, imaging, electrophy-

siological, and behavioral/cognitive). The path to vali-

dation of each biomarker for each epilepsy syndrome

will need to continue with high priority for translational

epilepsy research. Thus, intermediate biomarkers that

predict longer term outcome measures will take on an

important role in determining interim outcomes.

4. Implementation: After the above considerations are

met, there remain logistics and considerations around

implementation. With respect to antiepileptogenesis

trials, implementation should include the patient/care-

giver perspective—what would be decision-making

factors for people to enroll in a clinical trial when they

have not yet developed epilepsy? Considerations of this

sort may be quite different, for example, in 2 different

scenarios: the parents of a newborn with TSC at risk of

devastating, intractable seizures and disability versus an

adult with TBI who may or may not develop seizures.

The design and duration of antiepileptogenesis trials

also need to be adapted to each of these scenarios based

on the known natural history for each epilepsy type.

Implementation of antiepileptogenesis trials may differ sig-

nificantly regarding approach in genetic versus other causes.
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For genetic syndromes with epilepsy, early diagnosis of course

is critical prior to epilepsy onset to enable the enrollment of

clinical populations who are at risk, based on electroencepha-

logram or other biomarkers, but not yet displaying epilepsy.

The development of disease-targeted therapeutics for these

syndromes will presumably enable preventive treatments and

associated clinical trials; examples here would be sodium chan-

nel inhibitors for SCN8A or SCN2A gain-of-function patho-

genic variants or mTOR inhibitors for TSC. Some challenges

that preventive clinical trials will face in these neurodevelop-

mental syndromes are the choice of an appropriate time win-

dow to delay or prevent epilepsy onset as well as the

development and validation of clinical outcome measures for

the nonseizure comorbidities. Preclinical genetic models

for these syndromes might inform about the temporal window

for prevention of epilepsy in these syndromes as well as the

potential prevention of comorbidities. Natural history data in

patients will also be essential to determine the rate of conver-

sion (ie, development of epilepsy) as well as the duration of the

presymptomatic epileptogenic stage to inform trial duration

and minimum number of patients for adequate study power.

Distinct causes of secondary epilepsies may warrant support

of antiepileptogenesis trials. For example, in some areas of the

world, infections of the CNS by neurocysticercosis or other

pathogens cause one-third of epilepsies and directly contribute

to the higher incidence of epilepsy in resource-poor coun-

tries.99 The 2019 World Health Organization report on Epi-

lepsy, A Public Health Imperative highlighted these and

other modifiable risk factors as key opportunities to reduce the

global burden of epilepsy.100

Antiepileptogenesis trials are currently underway for TSC.

A clinical trial for epilepsy prevention using vigabatrin in

asymptomatic infants with TSC aiming to lower the risk of

developing infantile spasms is currently ongoing (Preventing

Epilepsy Using Vigabatrin in Infants with Tuberous Sclerosis

Complex, NCT02849457, PREVeNT trial, clinicaltrials.gov).

The trial targets a patient population of presymptomatic infants

with TSC less than 6 months of age and monitors the develop-

mental impact of epilepsy from birth to 36 months of age. As

illustrated in the introductory vignette, the antiepileptogenic or

preventive approach is expected to also result in more favor-

able cognitive, behavioral, and developmental outcomes.

Conclusion

In summary, successful integrated research programs in anti-

epileptogenesis will combine101: (1) animal model studies; (2)

development of new animal models (both for genetic epilepsies

and acquired epilepsies); (3) development and validation of

biomarkers; (4) stratification of treatment groups and outcome

evaluations based on validated biomarkers in both animal and

human trials; (5) selection of novel creative high-value targets

based on preclinical research (such as metabolic, epigenetic,

and astrocytic targets reviewed above); (6) screening and

repurposing of FDA-approved drugs; and (7) coordination of

clinical research strategies to understand the best time window

for preventive trials and the ideal patient populations.
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