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Abstract: Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through 
a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at 
days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse). 
The average sharpness of imaged vessels was found to remain stable, with relative change in 
sharpness under 7.69% ± 1.2% over 28 days. Through-implant images of vessels at day 60 
appeared sharper and smaller on average, with microvessels clearly visible, compared to 
through-skull images where vessels appeared blurred and distorted. These results suggest that 
long-term imaging through this implant is feasible. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Laser speckle imaging (LSI) is a widely used imaging technique which is capable of 
distinguishing between static and dynamic regions of a sample. Due to its high spatiotemporal 
resolution, this technique has proved useful for a range of applications such as object velocity 
measurements [1], blood flow sensing [2], laser vibrometry [3], surface roughness evaluation 
[4], and acousto-optic tomography [5, 6], as well as imaging blood flow [2, 7–21]. 

The first application of LSI to cerebral blood flow imaging [8] used LSI spatial contrast 
analysis [7]. Subsequently, LSI temporal contrast was developed [9, 10], which allowed for 
reduced static noise and improved spatial resolution compared to LSI spatial contrast 
analysis, at the expense of temporal resolution. In LSI temporal contrast imaging, a coherent 
source is directed onto a roughened surface, and the scattered light produces a random 
interference pattern called speckle [11, 12]. Movement of scattering particles within the 
random medium causes phase shifts in the scattered light and thus changes the random 
interference pattern, producing temporal fluctuations in the speckle pattern [11, 12]. When 
this speckle pattern is imaged with a camera of limited exposure time, these temporal 
fluctuations in the speckle pattern corresponding to dynamic regions of the sample appear 
smoother than the surrounding static regions [13, 22]. The degree of smoothness is measured 
as speckle contrast, and previous studies applying LSI to cerebral blood flow have shown that 
this speckle contrast correlates with blood flow velocity [11, 13]. 

This improved method of LSI temporal contrast imaging was applied to intact rat skull 
[14], but the poor transparency of the skull resulted in limited spatial resolution of the 
underlying blood flow. Previous studies have addressed this challenge in animal models by 
thinning [15] or polishing [16] the skull, optically clearing the skull [17], or by replacing a 
portion of skull with a transparent window made from glass or PDMS [23–25], which are 
powerful research techniques but which are not appropriate for human application as 
permanent cranial implants for patients. Skull thinning and polishing techniques affects 

https://doi.org/10.1364/OA_License_v1


protection for the brain, glass-based windows have extremely low fracture toughness of 
typical glasses ( ICK  = 0.7-0.9 MPa 1/2m ) [26] which increases potential for catastrophic 

failure by fracture, and the effect of skull optical clearing agents for long-term use on human 
skull is unknown. A number of biomedical considerations including biocompatibility, 
mechanical strength, and ageing should be examined in order to create an optical window for 
eventual clinical application. Conventional cranial prosthesis including titanium, alumina, and 
acrylic [27], have not provided the requisite combination of transparency and toughness 
required for clinically-viable transparent cranial implants. To address this challenge, our 
group has previously introduced a transparent nanocrystalline yttria-stabilized-zirconia cranial 
implant material, which possesses the mechanical strength and biocompatibility which are 
prerequisites for a clinically-viable permanent cranial implant for patients [28–30]. Yttria-
stabilized zirconia (YSZ) represents an attractive alternative, due to its relatively high 
toughness ( ICK  ~8 MPa 1/2m ) [31], as well as its proven biocompatibility in dental and 

orthopedic applications [32–34]. 
We have previously shown that this implant, which we refer to as the “Window to the 

Brain” implant (WttB), allows for increased imaging depth and contrast compared to the 
native skull for optical coherence tomography (OCT) [28] as well as ultrasound [35]. In this 
present study, we sought to expand upon previous indications that this WttB implant allows 
for improved LSI spatial resolution of brain blood flow compared to imaging through the 
native skull in mice [36]. Specifically, we investigate the stability of the WttB implant for LSI 
temporal contrast imaging by comparing the sharpness of mouse cerebral blood flow images 
over 28 days. We also compare LSI temporal contrast imaging between the WttB implant and 
native skull in a long-term mouse at 60 days post-implantation. 

2. Methods 

2.1 Implant fabrication and preparation 

Transparent nanocrystalline 8 mol% YO1.5 yttria-stabilized zirconia (nc-YSZ) implant 
samples were produced from a precursor YSZ nanopowder (Tosoh USA, Inc., Grove City, 
OH, USA) densified into a transparent bulk ceramic via Current-Activated Pressure-Assisted 
Densification (CAPAD) as described previously [37]. The thickness of the resulting densified 
YSZ discs were reduced from 1 mm to ~300 μm by polishing with 30 μm diamond slurry on 
an automatic polisher (Pace Technologies, Tucson, Arizona USA). The samples were then 
polished with successively finer diamond and silica slurries ranging from 6 to 0.2 μm. 
Samples were sectioned into rectangles of approximately 2.1 x 2.2 mm using a diamond 
lapping saw (DTQ-5, WEIYI, Qingdao, China), followed by sonication in acetone and 
thorough rinsing in water. Optical transmittance and reflectance spectra for the polished 
implants are shown in Fig. 1. 
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the transparent nc-YSZ implant. The temporal contrast, Kt, of each image pixel in the time 
sequence was calculated using Eq. (1) [9], 
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where Ix,y(n) is the intensity at pixel (x,y) in the nth image, N is the number of images 
acquired, and Ix,y is the mean value of intensity at pixel (x,y) over the N images. 

We assessed the quality of the speckle contrast images over time in terms of signal to 
noise ratio (SNR) and vessel sharpness. To quantify signal to noise ratio for each exposure 
time and time point, the contrast intensity profile along a vertical line (across the blood 
vessels) was considered. The profile lines were chosen for each mouse such that 3 to 4 vessels 
were intersected, and remained the same between the time points and the exposure times. 
Figure 3(b) shows an example of the contrast intensity profile for 6 ms exposure time at day 
0, 14 and 28 for Mouse 3. Equation (2) shows how SNR values were calculated for each 
exposure time and time point, 

 
n

KSNR Kσ
Δ=  (2) 

where ΔK is the depth of the vessel peak from the baseline (mean noise) and σKn is the 
standard deviation of the noise. A visual example of ΔK and σKn are shown in Fig. 3(b). The 
SNR values were averaged over the mice (1, 2, and 3) and standard errors were calculated. 
The optimum SNR between the exposure times in each time point was chosen for the contrast 
images sharpness comparison. As an indicator of resolution, we compared the sharpness of 
the vessel edges in images by calculating fall distance (the number of pixels) of the edge of 
the vessel to go from 10% to 90% of ΔK value were calculated [38]. A shorter fall distance 
corresponds to greater sharpness. The same sampled contrast intensity profiles were 
considered for the fall distance calculation. Figure 3(b) shows an example trace and 10–90% 
fall distance measurement. In order to evaluate the change in sharpness over the time points in 
Experiment 1, relative change in fall distance over the time points day 14 and day 28 
compared to day 0 baseline for each animal and vessel were evaluated using Eq. (3). 

 Day0

Day0

Fall distance - Fall distance
Relative fall distance =

Fall distance
 (3) 

To compare the blood vessel images through-skull and through-implant in Experiment 2, 
absolute fall distances with respect to the vessels size (FWHM) were determined. FWHM of 
the vessels in profiles were taken as the vessel diameter [39] (Fig. 3(b)). 

3. Results 
3.1 Experiment 1: LSI image quality over time 

The results from Experiment 1 are shown in Figs. 3 and 4. Figure 3(a) shows regular images 
and LSI temporal contrast images at each of the 4 exposure times, for days 0, 14 and 28 from 
Mouse 3 (data for Mice 1-2 not shown). In the regular images, some tissue regrowth is visible 
at the implant edges at 14 and 28 days. It should also be noted that at day 0, blood flow is 
expected to be altered in response to the invasive cranioplasty surgery (e.g. due to potential 
reactive hyperemia [40] (increased blood flow), changes in respiration, etc.). Due to these 
differences in the mouse biology and physiology at different imaging time points, we sought 
to determine the optimal exposure time for LSI imaging at each time point, so that we could 
compare the images of highest SNR that could be acquired at each time point. 
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best compromise between increased contrast and reduced noise. It should be noted, however, 
that the modification of blood flow at the different time points, as evidenced by the different 
optimal exposure times, may also be due to several other confounding factors. Anesthetic 
agents (including isoflurane and ketamine used in this study) are known to modulate cerebral 
blood flow, and the concentration of these drugs in the blood stream was not kept constant 
over the imaging sessions. Respiration can cause noise in LSI, and its rate, along with arterial 
blood gas levels, can significantly alter blood flow. These variables, in addition to the small 
sample size used in this study, make it difficult to attribute the observed differences in blood 
flow between the time points to a particular cause. 

Image resolution (i.e. sharpness) was found to decrease by up to 13% over the 28 days 
compared to day 0 baseline in the 9 vessels analyzed from Mice 1-3 (Fig. 4(b)). The relative 
increases in average fall distance between day 14 and day 28 compared to day 0 were 6.56% 
± 1.03% and 7.69% ± 1.2%, respectively. It should be noted that while day 0 is considered as 
the baseline for comparison, it does not represent an unperturbed state of normal cerebral 
blood flow. It is likely that blood flow was altered in response to the invasive cranioplasty 
surgery, and thus the higher SNR and sharpness of the day 0 images compared with days 14 
and 28 may be due in part to an elevated signal at day 0, rather than a loss of signal at days 14 
and 28. SNR and sharpness stayed more stable between 14 and 28 days, consistent with this 
hypothesis. Additionally, new microvessels which were not visible in day 0 are visible at 
these later time points, which suggests revascularization may be occurring near the implant 
surface. Together, these results appear to indicate that image quality remains high up to 28 
days post-implantation, but additional longer time points are needed to confirm this is the 
case. In Experiment 2, a day 60 time point shows that SNR is similar to the SNRs obtained at 
days 14 and 28 in Experiment 1 (SNR between 3 to 4 in both Fig. 4(a) and Fig. 6(a)), and 
microvessels are clearly visible at this later time point (Fig. 5(a)). 

Comparing imaging through the skull and a long-term (60 days) implant (Fig. 5(a)), the 
skull had a higher SNR for lower exposure times (1 and 2 ms), and the implant SNR was 
higher at longer exposure times (6 and 10 ms) (Fig. 6(a)). The higher SNR of the through-
skull images compared with implant at short exposure times may be explained by the natural 
filtering-out of smaller vessels imaged through the skull. Imaging through the window, on the 
other hand, resolves small vessels which are more sensitive to exposure time. At low 
exposure time, the contrast of these small vessels is very low, contributing to the lower SNR 
through the window compared to skull. Exposure time of 6 ms gave the highest SNR for both 
skull and implant and was used for comparing SNR and sharpness of vessels imaged beneath 
each. Because this comparison was made between two different spatial regions of the brain, 
different vessels of varying diameter were compared. Thus, SNR and sharpness of vessels 
(fall distance) are plotted against the vessel diameter (FWHM of vessels in intensity profiles). 
As mentioned earlier a number of small vessels, associated with lower blood flow and 
accordingly SNR, were detected through the implant which were naturally filtered-out by the 
skull (Fig. 6(b)). These detected small vessels decreased the averaged SNR shown in Fig. 
6(a). In Fig. 6(c), interestingly, the data from the skull and implant fell into separate clusters, 
with vessels imaged through the implant having smaller FWHM and shorter fall distances, 
while vessels imaged through the skull have larger FWHM and higher fall distances. This 
data shows that vessels imaged through the implant appear smaller in diameter and have 
sharper borders compared to those imaged through the skull. As the size of vessels and 
velocity of blood flow is not expected to differ on average between the two hemispheres of 
the mouse brain, the apparent increase in vessel diameter imaged through the skull vs implant 
is likely due to blurring of the image through the skull. In general, the light transmission to 
the brain and reflection from the brain are lower in the through-skull image. Additionally, the 
skull scattering disorders the speckle pattern that was created by the brain hemodynamics, 
making a less accurate speckle pattern. Both of the defects are caused by skull and the skull 
texture is not homogeneous, making image correction or enhancement very complex [14]. 



The reduction in border sharpness of the vessels imaged through the skull vs implant is 
consistent with this explanation, and the blurred nature of the through-skull image compared 
to the through-implant image is visually apparent in Fig. 5(a). It should also be noted that 
while the SNR and sharpness of the through-implant images are an improvement over the 
through-skull images, the mouse skull is inherently transparent itself [14], which is not the 
case in larger animals or humans. 

LSI temporal contrast imaging has become a useful tool for brain blood flow applications 
as the images it produces contain functional information (i.e. relative blood velocity) in 
addition to showing structure of the vessel networks. Figure 7 contains a color map version of 
the 6 ms LSI image from Mouse 4 (Fig. 5(a)), where minimum relative velocity (i.e. static 
regions) appears blue and maximum relative velocity (i.e. maximum blood flow velocity) 
appears red. As seen in Fig. 7, much more precise velocity information, particularly of 
microvessels, can be detected through the implant, while the reduced sharpness of the vessels 
imaged through skull obscures precise flow determinations. Imaging microvessels (usually 
involving small arteries of less than 150 μm in diameter, arterioles, capillaries, and venules 
[41, 42]) is important for many applications, as microcirculation plays a critical role in 
physiological processes such as tissue oxygenation and nutritional exchange [43]. Monitoring 
the spatio-temporal characteristics of microcirculation is crucial for studying the normal and 
pathophysiologic conditions of tissue metabolism. It is also useful for assessing 
microcirculatory dysfunction due to disease conditions such as type 2 diabetes, peripheral 
vascular disease (PVD), atherosclerotic coronary artery disease, obesity, heart failure, 
Alzheimer’s, schizophrenia and hypertension, among others [44–46]. In addition, 
quantification of dynamic blood flow, angiogenesis, and vessel density are critical for 
monitoring the progression of wound healing [47]. Although high resolution vascular network 
mapping is possible using imaging modalities such as computed tomography (CT), these 
approaches require injection of contrast agents and pose disadvantages such as radiation 
exposure. Existing non-invasive methodologies (including LSI through skull) are inadequate 
to study blood flow at microvessel resolution [48]. Windows such as the WttB implant are 
thus important tools for research, and in the case of the WttB implant, can become important 
enablers of clinical diagnostics and therapy involving cerebral microvessels. 

As recent studies show, creating novel windows for brain studies has been gaining 
attention recently [25, 49–51]. Some of these studies, involving optical clearing agents 
(OCAs) applied to the scalp overlying native skull, have shown limited success due to optical 
losses and scattering in the skull. These skin optical clearing strategies could work in 
conjunction with the WttB implant, to allow for imaging of cerebral blood flow in awake and 
behaving animals through closed scalp and implant, for example to study cerebrovascular 
hemodynamic responses and tissue oxygenation and other stimuli. Future studies by our 
group will explore this combined OCA-WttB strategy, as well as including additional 
imaging modalities which can couple with LSI to provide additive information, such as OCT 
and intrinsic optical signal (IOS). 
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