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Abstract: Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through
a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at
days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse).
The average sharpness of imaged vessels was found to remain stable, with relative change in
sharpness under 7.69% + 1.2% over 28 days. Through-implant images of vessels at day 60
appeared sharper and smaller on average, with microvessels clearly visible, compared to
through-skull images where vessels appeared blurred and distorted. These results suggest that
long-term imaging through this implant is feasible.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser speckle imaging (LSI) is a widely used imaging technique which is capable of
distinguishing between static and dynamic regions of a sample. Due to its high spatiotemporal
resolution, this technique has proved useful for a range of applications such as object velocity
measurements [1], blood flow sensing [2], laser vibrometry [3], surface roughness evaluation
[4], and acousto-optic tomography [5, 6], as well as imaging blood flow [2, 7-21].

The first application of LSI to cerebral blood flow imaging [8] used LSI spatial contrast
analysis [7]. Subsequently, LSI temporal contrast was developed [9, 10], which allowed for
reduced static noise and improved spatial resolution compared to LSI spatial contrast
analysis, at the expense of temporal resolution. In LSI temporal contrast imaging, a coherent
source is directed onto a roughened surface, and the scattered light produces a random
interference pattern called speckle [11, 12]. Movement of scattering particles within the
random medium causes phase shifts in the scattered light and thus changes the random
interference pattern, producing temporal fluctuations in the speckle pattern [11, 12]. When
this speckle pattern is imaged with a camera of limited exposure time, these temporal
fluctuations in the speckle pattern corresponding to dynamic regions of the sample appear
smoother than the surrounding static regions [13, 22]. The degree of smoothness is measured
as speckle contrast, and previous studies applying LSI to cerebral blood flow have shown that
this speckle contrast correlates with blood flow velocity [11, 13].

This improved method of LSI temporal contrast imaging was applied to intact rat skull
[14], but the poor transparency of the skull resulted in limited spatial resolution of the
underlying blood flow. Previous studies have addressed this challenge in animal models by
thinning [15] or polishing [16] the skull, optically clearing the skull [17], or by replacing a
portion of skull with a transparent window made from glass or PDMS [23-25], which are
powerful research techniques but which are not appropriate for human application as
permanent cranial implants for patients. Skull thinning and polishing techniques affects
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protection for the brain, glass-based windows have extremely low fracture toughness of
typical glasses (K,. = 0.7-0.9 MPa m"?) [26] which increases potential for catastrophic

failure by fracture, and the effect of skull optical clearing agents for long-term use on human
skull is unknown. A number of biomedical considerations including biocompatibility,
mechanical strength, and ageing should be examined in order to create an optical window for
eventual clinical application. Conventional cranial prosthesis including titanium, alumina, and
acrylic [27], have not provided the requisite combination of transparency and toughness
required for clinically-viable transparent cranial implants. To address this challenge, our
group has previously introduced a transparent nanocrystalline yttria-stabilized-zirconia cranial
implant material, which possesses the mechanical strength and biocompatibility which are
prerequisites for a clinically-viable permanent cranial implant for patients [28-30]. Yttria-
stabilized zirconia (YSZ) represents an attractive alternative, due to its relatively high
toughness (K,. ~8 MPa m"?) [31], as well as its proven biocompatibility in dental and
orthopedic applications [32—34].

We have previously shown that this implant, which we refer to as the “Window to the
Brain” implant (WttB), allows for increased imaging depth and contrast compared to the
native skull for optical coherence tomography (OCT) [28] as well as ultrasound [35]. In this
present study, we sought to expand upon previous indications that this WttB implant allows
for improved LSI spatial resolution of brain blood flow compared to imaging through the
native skull in mice [36]. Specifically, we investigate the stability of the WttB implant for LSI
temporal contrast imaging by comparing the sharpness of mouse cerebral blood flow images
over 28 days. We also compare LSI temporal contrast imaging between the WttB implant and
native skull in a long-term mouse at 60 days post-implantation.

2. Methods
2.1 Implant fabrication and preparation

Transparent nanocrystalline 8 mol% YO,s yttria-stabilized zirconia (nc-YSZ) implant
samples were produced from a precursor YSZ nanopowder (Tosoh USA, Inc., Grove City,
OH, USA) densified into a transparent bulk ceramic via Current-Activated Pressure-Assisted
Densification (CAPAD) as described previously [37]. The thickness of the resulting densified
YSZ discs were reduced from 1 mm to ~300 um by polishing with 30 um diamond slurry on
an automatic polisher (Pace Technologies, Tucson, Arizona USA). The samples were then
polished with successively finer diamond and silica slurries ranging from 6 to 0.2 pum.
Samples were sectioned into rectangles of approximately 2.1 x 2.2 mm using a diamond
lapping saw (DTQ-5, WEIYI, Qingdao, China), followed by sonication in acetone and
thorough rinsing in water. Optical transmittance and reflectance spectra for the polished
implants are shown in Fig. 1.
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Fig. 1. Reflectance and transmittance spectra of Window to the Brain implant.
2.2 Animals

All experimental procedures and humane care of mice were conducted in compliance with the
University of California, Riverside Institutional Animal Care and Use Committee approval.
The N = 4 8-12-week-old C57Bl/6 male mice (Jackson Laboratory) used in this study were
housed under a 12-hour light and 12-hour dark cycle with ad libitum access to food and
water.

2.3 Surgical procedures

Craniectomy surgery was conducted as previously described [36]. Briefly, mice were
anesthetized with isoflurane inhalation (0.2-0.5%), and given ketamine and xylazine (K/X)
(80/10 mg/kg, i.p.). Additional anesthetic was administered as necessary. Hair was removed
from the scalp using clippers and depilatory cream. Mice were then secured into stereotaxic
frames to immobilize the head for surgery. Ophthalmic ointment was placed over the eyes,
and the surgical site was sterilized with alternating application of betadine and 70% EtOH (3
times). Implants were also sterilized in 70% EtOH.

A sagittal incision was made to the left of the midline, and the scalp retracted to expose
the skull. Periosteum was removed from the skull, and a craniectomy was performed with a
surgical drill and carbide burr to remove a square section of skull over the right parietal lobe,
with dimensions slightly larger than the implant. The YSZ implant was placed within the
craniectomy directly on the intact dura mater, and dental cement was applied to each of the
four corners of the implant to prevent displacement. Dental cement was cured with UV light
exposure for 20 seconds. Figure 2(a) shows an illustration of implant placement envisioned in
eventual human application, as well as implant placement used in mice in this study.

Imaging with LSI was conducted immediately after the cranioplasty procedure, while the
scalp was still open, as well as follow-up imaging at 14 and 28 days (for Mice 1-3), or 60
days (for Mouse 4) after the implantation surgery. For each follow-up imaging procedure,
mice were anesthetized as described above, and the scalp was reopened to expose the implant.
Periosteum overlying the implant (and skull for Mouse 4) was removed, and imaging was
conducted in an identical manner to the baseline imaging. During imaging sessions, small
amounts of saline was dropped onto the skull periodically to prevent drying. Following each
imaging procedure, the scalp was closed with continuous suture, and triple antibiotic ointment
was applied to the surgical site. Buprenorphine was administered (0.1 mg/kg, s.c.) for
postoperative pain control. Mice were placed on a heating pad to aid recovery from
anesthesia. A second buprenorphine injection was administered between 4 and 6 hours after
surgery.
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2.4 Laser speckle imaging

LSI and regular images of regions of interest (ROI) (Fig. 2(c)) were acquired using a 12-bit
CMOS camera (DCC1545M, Thorlabs, Newton, NJ, USA). For regular images, a diffuse IR
source was used for illumination. For LSI, an 810 nm continuous wave NIR laser (Vari-Lase
REF946, Vascular Solutions, Morrisville, NC, USA) was used to illuminate the ROI with
incident power of 100 mW at a 45° incidence. While most LSI studies use visible
wavelengths for illumination, we chose 810 nm to reduce reflectance and increase
transmittance through the implant (see Fig. 1). The 810 nm laser intensity was homogenized
using a diffuser (ED1-C20-MD, Thorlabs) and was expanded using a pair of negative-positive
lenses (KPC043, —25 mm EFL and KPX094, 100 mm EFL, Newport, Irvine, CA, USA).
Collimated laser light was shown onto the cortex through the WttB implant (i.e. ROI 1 in
Mice 1-3) or through both skull and implant (i.e. ROI 1 and ROI 2 in Mouse 4). A sequence
of laser speckle images reflected from each illuminated region was captured by the CMOS
camera, which was focused 0.2 mm below the cortical surface using a 10X zoom microscope
(MLH-10X, 152.4 mm WD, Computar, Torrance, CA, USA). For each ROI, a sequence of n
= 100 images were captured at each of four different exposure times (1, 2, 6, and 10 ms) at a
speed of 14 frames per second. The aperture and magnification of the zoom microscope were
carefully chosen to ensure that the speckle size at the image plane was approximate to the
area of a single pixel in the CMOS chip [9, 14, 18]. A schematic of the LSI system is shown
in Fig. 2(b).

2.5 Experimental design

In this study, we conducted two separate experiments. Experiment 1 was conducted using
mice 1-3, with LSI through the implant (i.e. ROI 1) at baseline immediately following
implantation, and again after 14 and 28 days post-implantation. In Experiment 2, the LSI field
of view was expanded to include both the implant (ROI 1) as well as native skull (ROI 2) in
Mouse 4 at 60 days post-implantation. For both experiments, LSI imaging was conducted at 4
different exposure times. A timeline of imaging procedures for the two experiments is shown
in Fig. 2(d).
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Fig. 2. a) Illustration of the Window to the Brain concept in human and mouse skulls, b)
Schematic of the experimental imaging setup, ¢) Schematic of the craniotomy location on
murine cranium and regions of interest: ROI 1, the nc-YSZ implant and ROI 2, the left parietal
bone, d) Timeline for imaging procedures.

2.6 Image processing and data analysis

The contrast-resolved LSI images were constructed based on temporal statistical analysis of
laser speckle which has been proven to preserve spatial resolution [14]. Experimental results
have indicated that temporal speckle contrast analysis could expressively suppress the effect
of the static laser speckle pattern formed by the stationary superficial reflection and scattering
tissue on the visualization of blood flow [9, 14, 18-20]. Suppressing this effect makes
temporal contrast analysis an ideal method for imaging cerebral blood flow through skull and
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the transparent nc-YSZ implant. The temporal contrast, K;, of each image pixel in the time
sequence was calculated using Eq. (1) [9],
} )]
()
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where I ,(n) is the intensity at pixel (x,y) in the nth image, N is the number of images

acquired, and (1., is the mean value of intensity at pixel (x,y) over the N images.

We assessed the quality of the speckle contrast images over time in terms of signal to
noise ratio (SNR) and vessel sharpness. To quantify signal to noise ratio for each exposure
time and time point, the contrast intensity profile along a vertical line (across the blood
vessels) was considered. The profile lines were chosen for each mouse such that 3 to 4 vessels
were intersected, and remained the same between the time points and the exposure times.
Figure 3(b) shows an example of the contrast intensity profile for 6 ms exposure time at day
0, 14 and 28 for Mouse 3. Equation (2) shows how SNR values were calculated for each

exposure time and time point,
- AK
SNR = %;K” @

where 4K is the depth of the vessel peak from the baseline (mean noise) and oK, is the
standard deviation of the noise. A visual example of 4K and ¢K,, are shown in Fig. 3(b). The
SNR values were averaged over the mice (1, 2, and 3) and standard errors were calculated.
The optimum SNR between the exposure times in each time point was chosen for the contrast
images sharpness comparison. As an indicator of resolution, we compared the sharpness of
the vessel edges in images by calculating fall distance (the number of pixels) of the edge of
the vessel to go from 10% to 90% of 4K value were calculated [38]. A shorter fall distance
corresponds to greater sharpness. The same sampled contrast intensity profiles were
considered for the fall distance calculation. Figure 3(b) shows an example trace and 10-90%
fall distance measurement. In order to evaluate the change in sharpness over the time points in
Experiment 1, relative change in fall distance over the time points day 14 and day 28
compared to day 0 baseline for each animal and vessel were evaluated using Eq. (3).

Fall distance - Fall distance,,, ,

Relative fall distance =

. 3)
Fall distance,,,,
To compare the blood vessel images through-skull and through-implant in Experiment 2,
absolute fall distances with respect to the vessels size (FWHM) were determined. FWHM of
the vessels in profiles were taken as the vessel diameter [39] (Fig. 3(b)).

3. Results
3.1 Experiment 1: LSl image quality over time

The results from Experiment 1 are shown in Figs. 3 and 4. Figure 3(a) shows regular images
and LSI temporal contrast images at each of the 4 exposure times, for days 0, 14 and 28 from
Mouse 3 (data for Mice 1-2 not shown). In the regular images, some tissue regrowth is visible
at the implant edges at 14 and 28 days. It should also be noted that at day 0, blood flow is
expected to be altered in response to the invasive cranioplasty surgery (e.g. due to potential
reactive hyperemia [40] (increased blood flow), changes in respiration, etc.). Due to these
differences in the mouse biology and physiology at different imaging time points, we sought
to determine the optimal exposure time for LSI imaging at each time point, so that we could
compare the images of highest SNR that could be acquired at each time point.
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Fig. 3. a) Regular images and LSI images for exposure times of 1, 2, 6, and 10 ms, at 0, 14 and
28 days post-surgery from Mouse 3 (scale bars = 1 mm). b) Contrast intensity profiles of lines
across the images (shown as a dashed line in panel a) at 0, 14 and 28 days post-surgery from
Mouse 3. The arrows in a) show the vessels that are intersected by the profile lines shown in
b), labeled as V1 through V4 in day 0 image and profile (V4 arrow was not shown in day 14
and day 28 since the microvessel is not visible). The inset in b) shows how noise parameters,
|AK|, FWHM and fall distance are determined from the line profiles.

Line intensity profiles like the example shown in Fig. 3(b) were analyzed for all exposure
times and imaging time points in Mice 1-3. From these intensity profiles, peak intensity and
noise were determined (as described in the Methods section and illustrated in the inset of Fig.
3(b)), and signal-to-noise ratio (SNR) was calculated. Data for each time point and exposure
time was averaged between the three mice, and is shown in Fig. 4(a). As shown in the figure,
an exposure time of 6 ms gave the highest SNR at 0 and 28 days, while 10 ms exposure time
gave a higher SNR at 14 days.

Next, using the 9 LSI temporal contrast images corresponding to these optimal exposure
times for days 0, 14 and 28 for Mice 1-3, we sought to compare the sharpness (i.e. fall
distance) of the vessels in the images to determine if the images were becoming blurred and
losing resolution over time since implantation. The relative change in fall distance between
days 14 and 28 compared to day O baseline are shown in Fig. 4(b), and was below a 13%
increase for all vessels analyzed. On average, relative fall distance increased by 6.56% =+
1.03% by day 14, and 7.69% + 1.2% by day 28 compared to day 0.
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Fig. 4. a) SNR for different exposure times and imaging time points (mean and standard error)
and b) Relative change in fall distance between days 14 and 28 vs day 0 for 3 vessels each of
Mice 1-3 (dashed lines represent mean change i5n fall distance for all 9 vessels).

3.2 Experiment 2: LSl image quality through skull vs. chronic implant

As the goal of the WttB implant is to provide long-term optical access to the brain for
imaging techniques such as LSI, we sought to compare LSI imaging through the native skull
with imaging through a chronic implant which had been in the body long term. Thus, in
Experiment 2, Mouse 4 was imaged with LSI 60 days post-implantation. To make a direct
comparison between the implant and skull, the LSI field of view was expanded to include
both ROI 1 (the implant over the right parietal lobe) and ROI 2 (corresponding region of skull
over the left parietal lobe) in the same image. Figure 5(a) shows the LSI temporal contrast
images for exposure times of 1, 2, 6 and 10 ms.

Unlike Experiment 1, where a given field of view was compared with itself over time,
Experiment 2 compares two separate regions of the brain with different vessels. Thus, for this
second experiment, 3 line profiles with taken for the implant and for the corresponding region
of skull. To avoid selection bias, the location of these line profiles were chosen arbitrarily at
the ROI mid- and quarter-points, as depicted in the regular image in Fig. 5(b). As an example,
Fig. 5(c) shows the intensity profiles from the midline of both ROI 1 and ROI 2 for exposure
time 6 ms.
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Fig. 5. a) LSI temporal contrast images for 4 exposure times in Mouse 4. The left side of each
image is the WttB implant (ROI 1), and ROI 2 is the corresponding region of skull on the right
side of each image. b) Regular image of implant, showing the arbitrary locations where line
profiles were taken. c) Example contrast intensity profiles along the midline of ROI 1 and 2 for
exposure time 6 ms. The arrows in a) and c) show the vessels that are intersected by the
midline intensity profiles. Scale bars = 1 mm.

Using the same analysis methods described in Experiment 1, we calculated the SNR from
each line profile in ROI 1 and ROI 2 for each exposure time. The mean SNR for each
exposure time is shown in Fig. 6(a). The 6 ms exposure time LSI temporal contrast image
resulted in the highest SNR for both implant and skull, and thus we used this image to
compare the SNR and sharpness of detected vessels by LSI between native skull and a long-
term WttB implant. By the same method used in Experiment 1, we analyzed the 3 line
profiles across the WttB implant and 3 line profiles across the skull to determine the fall
distance and SNR for each vessel. Additionally, the full-width half~-max (FWHM) of each
vessel in the line profiles were taken as vessel diameter [33]. Figure 6(b) shows a plot of all
vessels intersected by the 6 profile lines, with SNR plotted against FWHM (i.e. vessel
diameter). A plot of all vessels intersected by the 6 profile lines, with absolute fall distance
(i.e. vessel sharpness) plotted against FWHM (i.e. vessel diameter) is shown in Fig. 6c.
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Fig. 6. a) Mean SNR of contrast intensity along arbitrary line profiles on the implant and skull
for 4 separate exposure times (error bars represent standard error), b) and ¢) SNR and
sharpness (respectively) vs FWHM for all vessels intersected by arbitrary line profiles on the
implant and skull for the LSI temporal contrast image acquired with 6 ms exposure time.

4. Discussion

The WttB holds the transformative potential for facilitating diagnosis and treatment of a wide
variety of brain pathologies and neurological disorders. We envision this implant having the
potential to enable delivery to and/or acquisition of light from the brain, in real-time, without
the need for repeated highly-invasive craniotomies. Such access may also create a new
platform for understanding the brain. As the goal of the WttB implant is to provide this access
long-term, it is important that the optical access is not lost over time. In this study, we
assessed LSI temporal contrast imaging quality (i.e. sharpness) of cerebral blood vessels
imaged through the implant up to 60 days post-implantation.

In LSI temporal contrast imaging, the exposure time of the camera can have a large effect
on image quality. As exposure time increases, both the contrast intensity and noise of the
image increase [21]. While the contrast plateaus after some threshold, noise continues to
increase with exposure time. Several sources of noise contribute to the measured noise,
including physiological noise, hardware noise, environmental noise, and noise due to
statistical uncertainties. The total noise of the speckle contrast signal is a combination of all of
these sources and the relative contributions of each of these exhibit different characteristics
with respect to the exposure time [21]. However, in our experiments, the physiologic noise
(including noise due to implantation surgery) is the dominant source because it is the only one
that is changing considerably over time. Physiologic noise arises from motion of the tissue
such as heartbeat or respiration-induced pulsatile motion of the exposed cortex, baseline
fluctuations in the cerebral blood flow, and possibly tissue regrowth and revascularization
following implantation. This motion and blood flow fluctuations introduce additional velocity
components to the measured signal and therefore cause speckle contrast fluctuations. Since
the physiological noises will be different on different days, exposure time should be
optimized during each imaging session. To determine the optimal exposure time in this study,
we compared the SNR of images taken at exposure times of 1, 2, 6, and 10 ms (Fig. 4(a), Fig.
6(a)), and each imaging session proceeded with the exposure time that maximized SNR.
Indeed, our results found that the optimal exposure time differed between the imaging time
points in Experiment 1, with maximum SNR for exposure time of 6 ms at days 0 and 28, and
10 ms at day 14. This may be explained by the differences in physiology between these time
points. At day 0, altered blood flow due to the implantation surgery is expected, and elevated
blood flow could give high contrast to the vessels. Thus, a lower exposure time (6 ms) can
provide sufficient contrast of the blood flow, while keeping noise low. By day 14, flow would
no longer be modified in response to the surgery, and thus a higher exposure time (10 ms)
may be needed to increase contrast in the images. At time points beyond 14 days, flow
remains low compared to day 0, but noise may increase due to healing processes (tissue
regrowth, revascularization, etc.), and thus a shorter exposure time (6 ms) may provide the
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best compromise between increased contrast and reduced noise. It should be noted, however,
that the modification of blood flow at the different time points, as evidenced by the different
optimal exposure times, may also be due to several other confounding factors. Anesthetic
agents (including isoflurane and ketamine used in this study) are known to modulate cerebral
blood flow, and the concentration of these drugs in the blood stream was not kept constant
over the imaging sessions. Respiration can cause noise in LSI, and its rate, along with arterial
blood gas levels, can significantly alter blood flow. These variables, in addition to the small
sample size used in this study, make it difficult to attribute the observed differences in blood
flow between the time points to a particular cause.

Image resolution (i.e. sharpness) was found to decrease by up to 13% over the 28 days
compared to day 0 baseline in the 9 vessels analyzed from Mice 1-3 (Fig. 4(b)). The relative
increases in average fall distance between day 14 and day 28 compared to day 0 were 6.56%
+ 1.03% and 7.69% £ 1.2%, respectively. It should be noted that while day 0 is considered as
the baseline for comparison, it does not represent an unperturbed state of normal cerebral
blood flow. It is likely that blood flow was altered in response to the invasive cranioplasty
surgery, and thus the higher SNR and sharpness of the day 0 images compared with days 14
and 28 may be due in part to an elevated signal at day 0, rather than a loss of signal at days 14
and 28. SNR and sharpness stayed more stable between 14 and 28 days, consistent with this
hypothesis. Additionally, new microvessels which were not visible in day 0 are visible at
these later time points, which suggests revascularization may be occurring near the implant
surface. Together, these results appear to indicate that image quality remains high up to 28
days post-implantation, but additional longer time points are needed to confirm this is the
case. In Experiment 2, a day 60 time point shows that SNR is similar to the SNRs obtained at
days 14 and 28 in Experiment 1 (SNR between 3 to 4 in both Fig. 4(a) and Fig. 6(a)), and
microvessels are clearly visible at this later time point (Fig. 5(a)).

Comparing imaging through the skull and a long-term (60 days) implant (Fig. 5(a)), the
skull had a higher SNR for lower exposure times (1 and 2 ms), and the implant SNR was
higher at longer exposure times (6 and 10 ms) (Fig. 6(a)). The higher SNR of the through-
skull images compared with implant at short exposure times may be explained by the natural
filtering-out of smaller vessels imaged through the skull. Imaging through the window, on the
other hand, resolves small vessels which are more sensitive to exposure time. At low
exposure time, the contrast of these small vessels is very low, contributing to the lower SNR
through the window compared to skull. Exposure time of 6 ms gave the highest SNR for both
skull and implant and was used for comparing SNR and sharpness of vessels imaged beneath
each. Because this comparison was made between two different spatial regions of the brain,
different vessels of varying diameter were compared. Thus, SNR and sharpness of vessels
(fall distance) are plotted against the vessel diameter (FWHM of vessels in intensity profiles).
As mentioned earlier a number of small vessels, associated with lower blood flow and
accordingly SNR, were detected through the implant which were naturally filtered-out by the
skull (Fig. 6(b)). These detected small vessels decreased the averaged SNR shown in Fig.
6(a). In Fig. 6(c), interestingly, the data from the skull and implant fell into separate clusters,
with vessels imaged through the implant having smaller FWHM and shorter fall distances,
while vessels imaged through the skull have larger FWHM and higher fall distances. This
data shows that vessels imaged through the implant appear smaller in diameter and have
sharper borders compared to those imaged through the skull. As the size of vessels and
velocity of blood flow is not expected to differ on average between the two hemispheres of
the mouse brain, the apparent increase in vessel diameter imaged through the skull vs implant
is likely due to blurring of the image through the skull. In general, the light transmission to
the brain and reflection from the brain are lower in the through-skull image. Additionally, the
skull scattering disorders the speckle pattern that was created by the brain hemodynamics,
making a less accurate speckle pattern. Both of the defects are caused by skull and the skull
texture is not homogeneous, making image correction or enhancement very complex [14].



Research Article I

Biomedical Optics EXPRESS o~

The reduction in border sharpness of the vessels imaged through the skull vs implant is
consistent with this explanation, and the blurred nature of the through-skull image compared
to the through-implant image is visually apparent in Fig. 5(a). It should also be noted that
while the SNR and sharpness of the through-implant images are an improvement over the
through-skull images, the mouse skull is inherently transparent itself [14], which is not the
case in larger animals or humans.

LSI temporal contrast imaging has become a useful tool for brain blood flow applications
as the images it produces contain functional information (i.e. relative blood velocity) in
addition to showing structure of the vessel networks. Figure 7 contains a color map version of
the 6 ms LSI image from Mouse 4 (Fig. 5(a)), where minimum relative velocity (i.e. static
regions) appears blue and maximum relative velocity (i.e. maximum blood flow velocity)
appears red. As seen in Fig. 7, much more precise velocity information, particularly of
microvessels, can be detected through the implant, while the reduced sharpness of the vessels
imaged through skull obscures precise flow determinations. Imaging microvessels (usually
involving small arteries of less than 150 um in diameter, arterioles, capillaries, and venules
[41, 42]) is important for many applications, as microcirculation plays a critical role in
physiological processes such as tissue oxygenation and nutritional exchange [43]. Monitoring
the spatio-temporal characteristics of microcirculation is crucial for studying the normal and
pathophysiologic conditions of tissue metabolism. It is also useful for assessing
microcirculatory dysfunction due to disease conditions such as type 2 diabetes, peripheral
vascular disease (PVD), atherosclerotic coronary artery disease, obesity, heart failure,
Alzheimer’s, schizophrenia and hypertension, among others [44—46]. In addition,
quantification of dynamic blood flow, angiogenesis, and vessel density are critical for
monitoring the progression of wound healing [47]. Although high resolution vascular network
mapping is possible using imaging modalities such as computed tomography (CT), these
approaches require injection of contrast agents and pose disadvantages such as radiation
exposure. Existing non-invasive methodologies (including LSI through skull) are inadequate
to study blood flow at microvessel resolution [48]. Windows such as the WttB implant are
thus important tools for research, and in the case of the WttB implant, can become important
enablers of clinical diagnostics and therapy involving cerebral microvessels.

As recent studies show, creating novel windows for brain studies has been gaining
attention recently [25, 49-51]. Some of these studies, involving optical clearing agents
(OCAs) applied to the scalp overlying native skull, have shown limited success due to optical
losses and scattering in the skull. These skin optical clearing strategies could work in
conjunction with the WttB implant, to allow for imaging of cerebral blood flow in awake and
behaving animals through closed scalp and implant, for example to study cerebrovascular
hemodynamic responses and tissue oxygenation and other stimuli. Future studies by our
group will explore this combined OCA-WttB strategy, as well as including additional
imaging modalities which can couple with LSI to provide additive information, such as OCT
and intrinsic optical signal (I0S).
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Fig. 7. Relative blood flow velocity in the 6 ms exposure time LSI temporal contrast image
from Mouse 4. Scale bar = 1 mm.

There are several limitations to the current study. The sample sizes used were small (n =3
and n = 1), and further experiments are needed to confirm the reproducibility of these
findings. While a permanent cranial implant can allow for less invasive imaging of the brain
at later time points, it requires an initial implantation surgery which carries associated risks
such as infection.

5. Conclusion

In conclusion, the Window to the Brain implant was found to remain stable for LSI imaging
up to 28 days, with average relative change in vessel sharpness under 8%. An additional
imaging session at 60 days found improved sharpness and visibility of microvessels compared
to imaging through skull which blurred and distorted vessels. These results suggest that this
implant can provide long-term access for brain imaging, but longer term studies are needed.
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