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Expression of the Astrocyte Water Channel
Aquaporin-4 in the Mouse Brain
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Abstract

Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system.

Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid

exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall

spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and

immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We

observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest

in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse

on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on

astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and

neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan

brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the

cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in

the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid

balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.
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Introduction

The aquaporins (AQPs) are a family of at least 13
molecular water channels that are expressed throughout
various mammalian tissues. A number of these proteins
have been found in the brain, including AQP1, AQP3,
AQP4, AQP5, AQP6, AQP8, AQP9, and AQP12
(Badaut et al., 2014). Aquaporin-4 (AQP4) is the main
water channel in the neuropil of the central nervous
system and is highly polarized in expression (Nielsen
et al., 1997). It is primarily found on astrocytes, particu-
larly on the astrocytic end-feet surrounding capillaries
and the blood brain barrier as well as the glia limitans
(Nagelhus et al., 2004; Oshio et al., 2004; Costa et al.,
2007). AQP4 is highly abundant at sites of fluid
transport, including pial and ependymal surfaces in con-
tact with cerebrospinal fluid (CSF), subarachnoid
space, and the ventricular system (Nielsen et al., 1997;

Rash et al., 1998). Based on its location and expression,
it was hypothesized that AQP4 is involved in bidirec-
tional fluid exchange between both the blood and CSF
compartments and the brain (Nagelhus et al., 2004).

Studies using AQP4 knockout mice have helped
elucidate the role of AQP4 in brain function. Initially
generated in 1997 using targeted gene distribution
(Ma et al., 1997), AQP4 knockout mice appear normal
in phenotype, growth, tissue morphology, neuromuscular
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function, blood brain barrier function, baseline intracra-
nial pressure, and intracranial compliance (Ma et al.,
1997; Manley et al., 2000; Papadopoulos et al., 2004).
However, these mice exhibited decreased astrocyte
water permeability (Solenov et al., 2004) and a
mild urine concentrating deficit (Ma et al., 1997). The
use of these knockout mice have revealed that AQP4 is
involved in a variety of brain functions including normal
cognitive function (Skucas et al., 2011; Scharfman and
Binder, 2013), spatial memory (Zhang et al., 2013), Kþ

buffering (Binder et al., 2006), astrocyte migration
(Saadoun et al., 2005), cell adhesion (Hiroaki et al.,
2006), and regulation of brain extracellular space
(Binder et al., 2004).

Abnormalities in water balance play a crucial role in
the pathophysiology of several neurological disorders,
including cerebral edema, stroke, and epilepsy. Due to
impaired AQP4-dependent water clearance, AQP4
knockout mice had higher intracranial pressure
and accelerated neurological deterioration in a model
of vasogenic edema compared with wild type mice
(Papadopoulos et al., 2004). Interestingly, AQP4-
deficient mice have increased survival and reduced swel-
ling in models of cytotoxic (cellular) edema (Manley
et al., 2000). In the rodent stroke model of transient
occlusion of the middle cerebral artery, AQP4 immunor-
eactivity was rapidly reduced, primarily in regions with
vascular damage (Friedman et al., 2009). However, AQP4
expression changes depend on the model used; for exam-
ple, in the rodent model of transient focal brain ischemia,
peaks of swelling and AQP4 expression, particularly the
M1 isoform, were observed at 1- and 48-hr after ischemia
(Ribeiro Mde et al., 2006; Hirt et al., 2009). In an animal
model of temporal lobe epilepsy, hippocampal AQP4
immunoreactivity was downregulated with partial recov-
ery over time (Lee et al., 2012). In addition, AQP4 knock-
out mice exhibited prolonged seizure duration and slowed
Kþ kinetics, but increased seizure latency, in response to
hippocampal electrical stimulation (Binder et al., 2006).
Despite the clear functional significance of AQP4 in
both the healthy and diseased brain, AQP4 expression
patterns in distinct brain areas have been incompletely
defined.

Determining the overall spatial distribution of AQP4
throughout the brain could enhance our understanding of
the functional relationship between AQP4 and specific
regions in the brain. Thus far, the location and abun-
dance of AQP4 protein in the brain has only been par-
tially described and only in certain brain areas (Nielsen
et al., 1997; Rash et al., 1998; Wen et al., 1999; Nagelhus
et al., 2004; Oshio et al., 2004; Vitellaro-Zuccarello et al.,
2005; Costa et al., 2007; Hsu et al., 2011). In this study,
we developed sensitive and specific Western blotting and
immunohistochemical techniques to provide a compre-
hensive description of AQP4 expression and localization

throughout the entire mouse brain. We found that high-
est AQP4 protein levels were found in the cerebellum with
significantly lower levels in the cortex, hippocampus, and
diencephalon. Throughout the brain, AQP4 does not
only display targeted expression on glial end-feet sur-
rounding blood vessels but also marked region-specific
parenchymal expression was observed.

Materials and Methods

Animals

All experiments were conducted in accordance with the
guidelines set forth by the National Institute of Health
and were approved by the University of California,
Riverside Institutional Animal Care and Use
Committee (IACUC). Animals were housed under con-
trolled conditions (12-hr light/12-hr dark) and had access
to food and water ad libitum. Six-week-old wild-type or
AQP4 knockout mice on a CD1 background were used
for all experiments.

Western Blot

CD1 mice (n¼ 5) were deeply anesthetized with an intra-
peritoneal injection of sodium pentobarbital (200mg/kg)
and were transcardially perfused with ice-cold phosphate-
buffered saline (PBS) containing protease inhibitors
(Roche). Brains were quickly removed from the skull
and the cerebral cortex, diencephalon, hippocampus,
cerebellum, and brainstem were rapidly microdissected
according to the mouse brain atlas of Paxinos and
Watson (Paxinos and Franklin, 2001). Tissue was mech-
anically homogenized in ice-cold radioimmunoprecipita-
tion assay buffer (150mM NaCl, 1% NP-40, 0.5 sodium
deoxycholate, 0.1% SDS, 50mM Tris, pH 7.5) containing
protease inhibitor cocktail (Roche) using a glass dounce
tissue grinder (Wheaton). Lysates were centrifuged
at 10,000 g for 5min and the supernatant extracted.
Protein concentrations were determined using Bio-Rad
BSA detection system and Bio-Tek plate reader. Briefly,
15 mg of protein were electrophoresed through a 12%
SDS-PAGE gel with 0.2% SDS with 8M urea. Samples
were then transferred to a nitrocellulose membrane and
incubated overnight in a 5% milk in tris-buffered saline
with Tween (TBST) blocking solution with rabbit anti-
AQP4 (1:1,000; EMD Millipore) and mouse anti-b-actin
(1:5,000, Calbiochem). Specificity of our anti-AQP4 anti-
body was determined previously with the use of AQP4
knockout mice (Binder et al., 2006). The next day, mem-
branes were washed and incubated for 2 hr at room tem-
perature with peroxidase-conjugated goat anti-rabbit and
goat anti-mouse secondary antibodies. After several
washes, membranes were visualized with ECL chemilu-
minescence (Pierce) and captured on Hyblot film
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(Denville). Band intensities were determined using densi-
tometry (ImageJ), and AQP4 levels were normalized to
b-actin. Statistical analysis was performed with
GraphPad Prism 5 using a one-way ANOVA with post
hoc Tukey pairs of columns comparison test. Statistical
significance was determined by a p value< .05, .01,
or .001.

Immunohistochemistry

Mice were euthanized with 200mg/kg sodium pentobar-
bital and transcardially perfused with ice-cold PBS
followed by 4% paraformaldehyde. Brains were then
post-fixed overnight in 4% paraformaldehyde followed
by cryoprotection in 30% sucrose in PBS, both at 4�C.
Tissue was frozen in dry ice-cooled isopentane and stored
at �80�C until sectioning. Tissue was cut into either cor-
onal (n¼ 3 mice) or sagittal (n¼ 3 wild type mice and
n¼ 3 AQP4 knockout mice) 50 mm thick sections using
a cryostat (Leica CM1950). Two sections from every
animal of each brain region examined were used, for a
total of n¼ 6 per experiment. In addition, both hemi-
spheres were imaged in coronal slices. Sections were
quenched in 3% peroxidase for 1 hr, blocked with 5%
normal goat serum in PBS for 1 hr, and incubated with
rabbit anti-AQP4 (1:200; EMD Millipore) in 0.3%
Triton-X-100 overnight at 4�C. The next day, sections
were washed and incubated with HRP-conjugated goat
anti-rabbit and tyramide from a TSA kit (Molecular
Probes/Invitrogen). Slices were washed and mounted on
frosted slides (Fisher) with Vectashield (Vector
laboratories).

Double immunofluorescence labeling of AQP4 with
the cerebellar astrocyte marker brevican was carried out
using mouse anti-brevican (1:200, BD Transduction
Laboratories) overnight concurrently with rabbit anti-
AQP4. Following tyramide development the next day,
sections were washed and incubated with Alexa Fluor
594-conjugated anti-mouse IgG (1:100, Invitrogen) for
2 hr at room temperature. Sections were then washed
and counterstained with fluorescent Nissl dye for
10min. After a final wash, sections were mounted with
Vectashield.

Confocal Microscopy

Fluorescent images were obtained using a fluorescent
microscope (BX-51, Olympus) with the 10� objective.
Confocal microscope images of various brain regions
were generated using either the 63� objective and the
Zeiss LSM 510 Meta or the 2� objective on the
Olympus BX61. Image processing was done using
the LSM 510 imaging software (Zeiss) or Slidebook 4.2.
Merged images were created using Photoshop CS4 with
the photomerge reposition feature.

Results

Differential Expression of AQP4 in the Mouse Brain

Western blot analysis revealed an approximately 32 to
34 kDa monomeric band representing AQP4 in the
brain. To determine the relative expression levels of
AQP4 throughout the brain, protein was isolated from
the cortex, diencephalon, hippocampus, cerebellum, and
brainstem, separated by SDS-PAGE and probed for
AQP4 (Figure 1(a)). Highest expression of AQP4 was
found in the cerebellum with a significantly lower
amount of AQP4 protein in the hippocampus, dienceph-
alons, and cortex (Figure 1(b)). One-way ANOVA
demonstrated a significantly difference between the
amount of AQP4 protein in the cerebellum compared
with the cortex (p< .001), diencephalon (p< .001), hippo-
campus (p< .001), and the brainstem (p< .05). The brain-
stem demonstrated significantly higher AQP4 levels than
both the cortex and hippocampus (p< .01), but not the
diencephalon. No statistically significant difference
between the cortex, diencephalons, and hippocampus
was observed.

AQP4 Expression in the Wild Type and Knockout
Mouse Brain

Consistent with the Western blot data, AQP4 immunor-
eactivity was high in various regions of the brainstem
relative to the levels seen in the hippocampus and
throughout the cortex and was highest in the cerebellum
(Figure 2(a)). The hypothalamus and thalamus exhibited
AQP4 labeling similar to that of the hippocampus and
cortex. Most notably, AQP4 was uniformly distributed
on astrocytic end-feet surrounding capillaries throughout
the entire brain and any region associated with CSF
including ependymal and glia limitans. Expression was
homogenous throughout the cortex but exhibited hetero-
geneous sublayer-specific expression in other brain
regions, such as the hippocampus and cerebellum.
AQP4 knockout mice exhibited no AQP4 immunoreac-
tivity (Figure 2(b)).

AQP4 Expression in the Mouse Forebrain

In the most rostral part of the brain, the olfactory bulb,
AQP4 immunoreactivity was richly expressed in the
glomerular layer (Figure 3(a)). Both astrocytic processes
and end-feet surrounding the capillaries within the glom-
erular layer densely expressed AQP4. Other layers of the
olfactory bulb demonstrated much less parenchymal
AQP4 immunoreactivity, although AQP4 was homoge-
nously expressed around blood vessels throughout all
layers of the olfactory bulb.

The medial olfactory area, the septal nuclei, receives
several reciprocal connections from various brain regions
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including the olfactory bulb and the hippocampus. In the
lateral septal nucleus, bush-like networks of AQP4 immu-
noreactivity were observed throughout, suggesting that
astrocytic processes were well labeled with AQP4
(Figure 3(b)). Similarly, AQP4 staining was pronounced
on the astrocyte processes within the thalamic nuclei,
with rich AQP4 stain found in particular within the
reticular thalamic nucleus (Figure 3(c)), a diencephalic
GABAergic structure.

The habenula is a region of the brain that is recipro-
cally connected to the pineal gland and is thought to play
a role in behavioral choices and responses to pain, stress,
anxiety, sleep, and reward (Hikosaka, 2010). In the
medial habenula (MH), by far, the most intense AQP4
immunoreactivity was observed around the ependymal
cells lining the third ventricle with substantial immunor-
eactivity also seen in the adjacent glial cell processes
within the habenular nucleus (Figure 3(d)). Intense stain-
ing outlined the cells in the MH suggesting cell membrane
AQP4 expression.

The hippocampus exhibited laminar specific AQP4
immunoreactivity (Figure 3(e)) as previously observed
(Hsu et al., 2011). In the CA1 region, AQP4 was intensely
stained across the hippocampal fissure and within the
stratum lacunosum moleculare (SLM). The dentate
gyrus was largely absent of AQP4 staining with the excep-
tion of astrocytic end-feet and astrocytic processes that
protruded into this neuronal layer. The CA1 stratum
radiatum and hilus of the dentate gyrus both exhibited
bush-like networks of AQP4 staining on astrocytes,
although it was not as pronounced as that seen in the
CA1 SLM. Of note, the staining of blood vessels through-
out the hippocampus was not laminar-specific but,
instead, was uniformly distributed throughout all layers.

Similar to what was observed in the MH, AQP4 stain-
ing was intense around the third ventricle and the
glia limitans in the ventromedial hypothalamus
(Figure 3(f)). Throughout the hypothalamus, a structure
central to neuroendocrine function, AQP4 immunoreac-
tivity was evident on astrocytic processes and end-feet

Figure 1. Western blot analysis of various brain regions. (a) Representative blot of AQP4 monomers (�32–34 Kd, lower band) and

b-actin (�43–45 Kd, upper band) protein in the cortex, diencephalon, hippocampus, cerebellum, and brainstem of the mouse brain.

(b) AQP4 band intensities were scanned, quantified, and normalized to the corresponding b-actin band intensities within each brain region

(n¼ 3). *indicates p< .05 and ***indicates p< .001 when compared with the cerebellum. yindicates p< .05 and yy indicates p< .01 relative

to the brainstem.
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surrounding capillaries. This staining, however, was not
as prominent as the staining seen on glial cells lining the
third ventricle.

AQP4 Expression in the Mouse Brainstem

Within the midbrain regions, AQP4 expression was
prominent in cells surrounding ventricular and cisternal
spaces (Figure 4). The substantia nigra of the basal gang-
lia exhibits robust AQP4 expression among the astrocytic
end-feet surrounding the capillaries, astrocytic mem-
branes, and the branched processes (Figure 4(a)).
Of note, intense astrocytic AQP4 immunoreactivity is
seen throughout the substantia nigra pars reticulata
(SNr). In the substantia nigra pars compacta (SNc),
AQP4 staining is not as intense, but it is still present on
both the capillaries and the astrocytic membranes and

processes. Interestingly, the substantia nigra is known
to be involved in processes associated with movement,
reward, addiction, and degeneration of the SNc is a hall-
mark of Parkinson’s disease.

Intense AQP4 immunoreactivity was found along the
glial limiting membranes lining the caudal edge of the
interpeduncular nucleus (Figure 4(b)), an area found at
the base of the midbrain tegmentum that is associated
with dopamine release and the regulation of rapid eye
movement sleep. Within this region, homogenous AQP4
staining was found on astrocytes, with distinct branch-like
processes seen throughout. Compared with other regions
of the midbrain, fewer capillaries were observed in the
interpeduncular nucleus, determined by the relatively low
abundance of AQP4-positive astrocytic end-feet.

AQP4 labeling was densely along the cerebral aque-
duct within the periaqueductal gray (Figure 4(c)), a

Figure 2. AQP4 immunoreactivity in the wild-type and AQP4 knockout mouse whole brain. 2� confocal images from sagittal brain slices

were merged together to form a whole brain image of the mouse brain. (a) AQP4 immunoreactivity in a sagittal slice from a wild-type

mouse brain. (b) AQP4 immunoreactivity in an AQP4 knockout mouse.
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brainstem region associated with pain modulation. Along
the aqueduct, astrocytic membranes, processes and end-
feet were all intensely labeled with AQP4. Lateral to
that, AQP4-postive astrocytic bush-like processes and
blood vessels were present; however, they were less
prominent.

In the pons, intense AQP4 immunoreactivity was
interspersed with patches of little to no AQP4 immunor-
eactivity (Figure 4(d)). This streak-like staining, in con-
junction with the lack of capillaries, was unique to this
region of the brain. The appearance suggests dark non-
stained white matter pathways known to cross the pons
and pockets of intense AQP4 immunoreactivity outlining
cells (likely pontine reticular formation nuclei). This is in
contrast to the robust staining seen in the lateral dorsal
tegmental nucleus (Figure 4(e)), a part of the brain that,
like the interpeduncular nucleus, is associated with the

modulation of rapid eye movement sleep. In the lateral
dorsal tegmental nucleus, capillaries were prominent and
branch-like processes labeled with AQP4 were clearly
present throughout.

Marked AQP4 staining in the hindbrain was seen
along the ependymal surfaces lining the fourth ventricle
in the medial vestibular nucleus and nucleus prepositus
(Figure 4(f)), regions associated with eye movement and
gaze holding, respectively. The glia limitans coating the
lateral edge of the ventral cochlear nucleus (Figure 4(g)),
closest to the flocculus, featured equally as prominent
AQP4 immunoreactivity. Striking AQP4 staining was
seen throughout the vestibular nucleus, but very little
AQP4 stain was observed more medial to the ventral
cochlear nucleus. Along the raphe magnus, another
region associated with pain modulation, AQP4 is brightly
stained (Figure 4(h)).

Figure 3. AQP4 immunoreactivity within forebrain regions, 10� images. (a) Glomerular layer of the olfactory bulb (GL). (b) Lateral

septal nucleus (LS). (c) Reticular thalamic nucleus (RT). (d) Medial habenula (MH). (e) Stratum lacunosum moleculare (SLM) of the

hippocampus. (f) Ventromedial hypothalamus (VMH). Scale bar: 100mm.
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Cerebellar Expression of AQP4

The unique architecture of the cerebellum makes AQP4
immunoreactivity look distinct from any other brain
region (Figure 5(a)). AQP4 immunoreactivity was rich

in the granule cell layer and prominent surrounding the
blood vessels within the cerebellum. The Purkinje cell
layer was nearly devoid of AQP4 staining except for
some astrocytic processes extending from the granule
cell layer. The molecular layer had abundant astrocytic

Figure 4. AQP4 immunoreactivity within the brainstem, 10� images. (a) Substantia nigra pars reticulata (SNr). (b) Interpeduncular

nucleus (IP). (c) Periaqueductal gray (PAG). (d) Pons (PN). (e) Lateral dorsal tegmental nucleus (LDTg). (f) Medial vestibular nucleus (MV)

and nucleus prepositus (Pr). (g) Ventral cochlear nucleus (VC). (h) Raphe magnus (RM). Scale bar: 100 mm.
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AQP4 staining. In both the granule cell and molecular
layers, AQP4 was seen on astrocyte cell membranes and
their branched processes.

Brevican is a chondroitin sulfate proteoglycan that has
previously been shown to be synthesized by and
expressed on cerebellar astrocytes (Yamada et al., 1997).
Confocal triple-labeled immunohistochemistry for AQP4
(green), brevican (red), and Nissl (blue) clearly demon-
strated colocalization of AQP4 and brevican on cerebel-
lar astrocytes (Figure 5(b)). Again, AQP4 was absent
from Purkinje cells but was abundant throughout the
granule cell layer.

Discussion

In this study, we used Western blotting and immunohis-
tochemistry to elucidate the expression pattern of AQP4
throughout the mouse brain. Prior studies have demon-
strated AQP4 expression in various regions of the brain
(Nielsen et al., 1997; Rash et al., 1998; Wen et al., 1999;
Frigeri et al., 2001; Nagy et al., 2002; Amiry-Moghaddam
et al., 2003, 2004a; Costa et al., 2007; Hsu et al., 2011)
and spinal cord (Rash et al., 1998; Oshio et al., 2004;
Vitellaro-Zuccarello et al., 2005); however, this is the
first comprehensive neuroanatomical study of AQP4
localization and protein levels in the rodent brain. We
also demonstrate marked expression and colocalization
of AQP4 with brevican, a proteoglycan found on the sur-
face of astrocytes in the cerebellum.

The expression pattern of AQP4 suggests a specialized
role in mediating the water movement between glial cells
and cavities containing CSF and the intravascular space.
We, like others, have found highly polarized AQP4
expression, with intense immunoreactivity on glia

limitans boarding the subarachnoid space and ventricles,
subpopulations of ependymocytes, pia, and perivascular
glial end-feet surrounding capillaries (Nielsen et al., 1997;
Amiry-Moghaddam et al., 2003; Goren et al., 2006).
Although AQP4 has been found on ependymal cells
(Badaut et al., 2000b), it was completely absent from
tanycytes, a class of ependymal cells found in the floor
of the third ventricle that contact hypothalamic neurons
and blood vessels (Badaut et al., 2002). AQP4 knockout
mice lack the ability to properly maintain water homeo-
stasis and, therefore, are more prone to neurological
decline in vasogenic edema (Papadopoulos et al., 2004).

In previous studies, AQP4 immunoreactivity has been
found close to blood vessels and on astrocyte processes in
the corpus callosum (Badaut et al., 2000b, 2002, 2014).
AQP4, like AQP9, has also been found on other white
matter tracts such as the anterior commissure and optic
chiasm (Badaut et al., 2002). AQP9 exhibited a similar
distribution to AQP4 and is thought to play a role in
aiding AQP4 function. Both AQP4 and AQP9 have
been found on astrocytic processes in periventricular
regions of parenchyma and in glia limitans bordering
subarachnoid space (Badaut et al., 2002). More recently,
however, studies of AQP9 knockout mice revealed that in
addition to astrocytes and ependymal cells, AQP9 is also
expressed on catecholaminergic neurons (Mylonakou
et al., 2009; Badaut et al., 2014).

We have demonstrated a region-specific expression pat-
tern of AQP4. Robust staining was found on astrocytic
membranes and processes in the lateral septal nuclei,
reticular thalamic nucleus, hippocampal fissure, and
SLM layer of CA1, SNr, interpeduncular nucleus and
throughout the granule cell layer of the cerebellum. Very
little AQP4 immunoreactivity was found medial to the

Figure 5. AQP4 and brevican immunoreactivity within the cerebellum. (a) Strong AQP4 signal is observed in the cerebellar granule cell

layer (GCL; 10�). Scale bar: 100mm. (b) Higher-power image of AQP4 (green), brevican (red), and Nissl (blue) labeling in the cerebellum

(63�). Example of a Purkinje cell denoted with an asterisk (*). Scale bar: 10mm.
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ventral cochlear nucleus and in predominantly neuronal
areas, such as the dentate granule cell layer of the hippo-
campus and the Purkinje cell layer of the cerebellum.

The heterogeneous pattern of AQP4 expression
throughout the brain suggests various functional roles
for AQP4 in addition to its role in water movement
across cell membranes. For example, we observed
robust AQP4 staining in the ventral cochlear nuclei.
Previously, AQP4 knockout mice were found to have
impaired hearing (Li and Verkman, 2001; Mhatre et al.,
2002), which was interpreted as suggesting a role for
AQP4 in ion and water homeostasis in the inner ear.
However, our findings suggest that deficiency of AQP4
in the ventral cochlear nuclei or central auditory path-
ways could also play a role. Similarly, in the olfactory
bulb, AQP4 expression was highest in the glomerular
layer, the characteristic multicellular synaptic unit of
the olfactory bulb, which agrees with previous findings
(Sorbo et al., 2007). Interestingly, AQP4 knockout mice
exhibit impaired olfaction (Lu et al., 2008), which was
interpreted as a deficit in the olfactory epithelium, but
our results suggest that deficiency of AQP4 in the glom-
erular layer of the olfactory bulb may be responsible for
this phenotype. The septal nucleus is connected to both
the olfactory bulb and the hippocampus, a structure asso-
ciated with learning and memory formation. Here, we
have shown abundant AQP4 expression in the septal
nuclei, hippocampus, and glomerular layer of the olfac-
tory bulb. A correlation between AQP4 and olfactory
learning has not been shown but would be interesting
to explore. It is of interest that AQP4 expression is par-
ticularly high in the thalamic reticular nucleus, a structure
hypothesized to be important in selective attention and
other functions related to consciousness (Crick, 1984;
Pinault, 2004).

The hippocampus is a structure critical to cognitive
function and long-term memory formation. Our current
findings agree with previous results suggesting laminar-
specific expression of AQP4 in the hippocampus, with
highest levels of AQP4 staining near the hippocampal
fissure and in the SLM (Costa et al., 2007; Hsu et al.,
2011). Previous studies have shown a role for AQP4 in
synaptic plasticity. Specifically, AQP4-deficient mice
exhibit impaired long-term potentiation and long-term
depression without any change in basal transmission
(Skucas et al., 2011; Scharfman and Binder, 2013).
Furthermore, marked AQP4 downregulation has been
observed in an animal model of temporal lobe epilepsy
(Lee et al., 2012), and AQP4-deficient mice have slowed
Kþ kinetics and increased seizure duration (Binder et al.,
2006). It is well-known that patients with temporal lobe
epilepsy often exhibit cognitive deficits, particularly in
hippocampal-dependent tasks such as spatial memory
(Bell et al., 2011; Amlerova et al., 2013; Brooks-Kayal
et al., 2013; Chin and Scharfman, 2013). These data,

together with recent findings that AQP4 modulates extra-
cellular [Kþ] during synaptic stimulation in the hippo-
campus (Haj-Yasein et al., 2014), suggest that AQP4 is
essential for synaptic plasticity.

The hypothalamic magnocellular neurosecretory
system has been implicated in both neuronal and glial
plasticity (Hatton, 1986). A previous study has demon-
strated that AQP4 staining is abundant in the rat magno-
cellular hypothalamic nuclei (Badaut et al., 2000a).
In addition, high AQP4 mRNA levels have been observed
in thalamic and hypothalamic regions (Venero et al.,
1999). Future studies should examine AQP4 expression
and regulation in subregions of the hypothalamus that
have distinct roles in neuroendocrine regulation and plas-
ticity. The polysialylated embryonic form of neural cell
adhesion molecule (PSA-NCAM) has been shown to be
required for the induction of synaptic plasticity (Muller
et al., 1996). Therefore, it would be of interest to examine
the distribution of PSA-NCAM in hypothalamic sub-
regions and its colocalization with AQP4. Furthermore,
it would be interesting to examine hypothalamic synaptic
plasticity in AQP4 knockout mice, as has been done in
the hippocampus (Skucas et al., 2011).

The periaqueductal gray plays a major role in pain and
analgesia. We found abundant levels of AQP4 expressed
throughout this region. Mice lacking AQP4 have increased
pain thresholds to thermal and chemical stimulation, but
not mechanical stimulation (Bao et al., 2010). Further sup-
porting a role for AQP4 in pain modulation, Nesic et al.
(2005) found increased levels of AQP4 mRNA and protein
in rats exhibiting central neuropathic pain. It would be
interesting for future studies to further explore the role
of AQP4 in brain regions associated with pain modulation,
such as the periaqueductal gray or the raphe magnus, in
which AQP4 immunoreactivity is also prominent.

Similar to AQP4, AQP1 has also been implicated in
pain perception. AQP1 knockout mice exhibited reduced
thermal, inflammatory, chemical, and cold pain percep-
tion but did not differ in response to mechanical stimuli
(Oshio et al., 2006; Zhang and Verkman, 2010). Although
AQP1 has been considered the major water transport
protein of the choroid plexus and is thought to play a
role in the secretion of CSF (Bondy et al., 1993; Nielsen
et al., 1993; Hasegawa et al., 1994; Badaut et al., 2002;
Oshio et al., 2003; Longatti et al., 2004; Oshio et al., 2005;
Fukuda et al., 2012), it was also been found on dorsal
root ganglion (DRG) neurons (Zhang and Verkman,
2010, 2015). Recent studies have implicated AQP1 in
DRG axonal growth and regeneration as well as osmotic
water permeability in isolated DRG neurons (Zhang and
Verkman, 2010, 2015).

Several anatomical regions of the brain are associated
with reward and addiction pathways, including the ven-
tral tegmental area, medial prefrontal cortex, hippocam-
pus, ventral striatum (including the nucleus accumbens),
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and the amygdala (Luthi and Luscher, 2014). Projections
connecting these various brain regions are dopaminergic
in nature. Previous studies have shown that dopamine
can decrease AQP4 water permeability (Zelenina et al.,
2002) and AQP4 protein expression (Kuppers et al.,
2008). It has also been shown that AQP4 deficiency can
increase Kþ-stimulated release of striatal dopamine (Ding
et al., 2007). Recent studies have shown that AQP4-
deficient mice have attenuated morphine tolerance, inhib-
ited development of morphine physical dependence and
impaired morphine analgesia (Wu et al., 2008; Chen
et al., 2010). In addition, chronic treatment with mor-
phine decreased spinal AQP4 expression in a rodent
model (Chen et al., 2010). An interesting study examining
cocaine-induced locomotion found that AQP4 knockout
mice exhibited attenuated locomotor activity in response
to cocaine stimulation (Li et al., 2006). Of note, whereas
the ventral tegmental area is associated with reward and
addiction, the substantia nigra of the midbrain, which
exhibits robust AQP4 immunoreactivity and utilizes
dopamine, is associated with movement as well as
reward and addiction. These studies, taken together, sug-
gest the involvement of AQP4 in addictive behavior.

Of all brain regions, AQP4 was most abundantly
expressed in the cerebellum, which is associated with
motor control and motor learning (Therrien and
Bastian, 2015). We have shown intense AQP4 immunor-
eactivity throughout the cerebellum; however, very little
is known about the relationship between cerebellar
AQP4 and motor control. Given the findings in
the hippocampus that AQP4-deficient mice exhibit
impaired synaptic plasticity (Skucas et al., 2011;
Scharfman and Binder, 2013), it would be interesting
to analyze the physiology of cerebellar slices from
AQP4-deficient mice for alterations in cerebellar synaptic
plasticity (e.g., cerebellar long-term depression), and
more generally to assess AQP4-deficient mice for deficits
in cerebellar learning paradigms.

Brevican, an extracellular matrix proteoglycan, is
synthesized by astrocytes and retained on their surface
throughout the adult rodent brain, but its highest level
of expression and spatial organization is within the cere-
bellar cortex (Yamada et al., 1997). Brevican has been
shown to parallel the gliotic response in central nervous
system injury, suggesting a role of brevican in reactive
gliosis (Jaworski et al., 1999; Thon et al., 2000). We dem-
onstrate colocalization of brevican and AQP4 in the cere-
bellum. Together with other studies demonstrating
colocalization of AQP4 and astrocyte markers (GFAP,
S-100b; Hsu et al., 2011), our current data clearly indicate
cell-type specificity of AQP4 expression in astrocytes.

It is well-known that AQP4 is tethered to the mem-
brane by a-syntrophin, a component of the dystrophin
protein complex. Mice deficient in a-syntrophin exhibited
reduced AQP4 expression on perivascular astrocytic

end-feet membranes and increased levels on membranes
facing the neuropil (Neely et al., 2001; Amiry-
Moghaddam et al., 2004b). Dystrophin-independent
pools of AQP4 have been found in the granular cell
layer of the cerebellum, the subpial end-foot layer, and
in ependymal cells (Nicchia et al., 2008). In addition,
AQP4 and a-syntrophin frequently colocalized at astro-
cytic membranes, particularly at perivascular astrocyte
end-foot processes, suggesting a linkage between these
two molecules (Inoue et al., 2002; Masaki et al., 2010).
Complimentary to these findings, deletion of the dystro-
glycan gene resulted in a reduction of AQP4 perivascular
expression and a loss of the formation of orthogonal
arrays of particles (OAPs; Noell et al., 2011). The pro-
teoglycan agrin has been implicated in the polarized
distribution of AQP4, specifically restricting OAPs to
end-feet membranes (Warth et al., 2004; Noell et al.,
2007, 2009). Studies of agrin knockout mice have demon-
strated that AQP4 expression was not altered, but the
formation of OAPs was decreased (Noell et al., 2009).
More recently, a study involving endothelial-astrocyte
cocultures demonstrated that application of agrin gave
rise to a pronounced polarization and membrane com-
partmentalization of AQP4 (Camassa et al., 2015). Taken
together, these data suggest that dystrophin and agrin
proteins may be responsible for the clustering of AQP4
around blood vessels.

In summary, AQP4 was densely expressed on astro-
cyte processes surrounding blood vessels (astrocyte end-
feet) and in regions of the brain associated with CSF
flow, including ventricles, subarachnoid space, and
ependymal cells. Regionally, AQP4 protein expression
was highest in the cerebellum, where it was strongly
expressed on the dense astrocyte network throughout
the granule cell layer. Throughout the entire brain,
AQP4 not only demonstrated region specificity but
also laminar specificity within individual structures, fur-
ther supporting the developing concept of astrocyte het-
erogeneity (Matyash and Kettenmann, 2010; Hoft
et al., 2014; Bayraktar et al., 2015). Reduced levels of
AQP4 are associated with a number of functional
defects, such as impaired hearing and olfaction, and
neurological disorders, including edema, epilepsy, and
stroke. Thus, investigation of the local functional rela-
tionship between AQP4 expression and specific anatom-
ical regions and circuits could offer new insight into the
diverse roles of AQP4 in the brain.

Summary

Aquaporin-4 is a glial water channel that is responsible
for water fluxes and ion homeostasis in the brain. Here,
we characterized the distribution of aquaporin-4 and
found that expression was high in the cerebellum and
areas associated with water movement.
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