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Mice de¢cient in the glial water channel aquaporin-4 (AQP4) show
decreased cerebral edema and improvedneurological outcome fol-
lowing water intoxication or ischemic challenge. In this report, we
tested seizure susceptibility in AQP4�/� mice. AQP4�/� mice and
wild-type controls were given the chemoconvulsant pentylenete-
trazol (PTZ) andmonitored for seizure activity. At 40mg/kg PTZ,
all wild-type mice exhibited seizure activity, whereas six of seven

AQP4�/� mice did not exhibit seizure activity. At 50mg/kg PTZ,
both groups exhibited seizure activity; however, the latency to
generalized (tonic-clonic) seizures was signi¢cantly lower in wild-
type than AQP4�/� mice. These results suggest that glial water
channelsmaymodulatebrain excitability and the initiation andgen-
eralization of seizure activity. NeuroReport 15:259^262 �c 2004
LippincottWilliams &Wilkins.
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INTRODUCTION
Seizure activity leads to cerebral edema in vivo, and
regulation of cell volume and swelling have been implicated
in seizure propagation in vitro. Decreasing extracellular
space (ECS) volume by exposure of tissue slices to
hypotonic bathing solutions produces hyperexcitability
and enhanced epileptiform activity [1–5]. Conversely,
hyperosmolar medium attenuates epileptiform activity in
hippocampal slices [3,5,6]. Furosemide, a chloride cotran-
sport inhibitor that blocks seizure-induced cell swelling,
inhibits epileptiform activity in vitro and in vivo [7,8]. These
experimental data parallel extensive clinical experience
indicating that hypo-osmolar states such as hyponatremia
lower seizure threshold while hyperosmolar states elevate
seizure threshold [9]. Thus, brain tissue excitability appears
to be exquisitely sensitive to osmolarity and the size of the
extracellular space.
Because of the importance of cell swelling and water

transport in determining ECS volume, we hypothesized that
water transport facilitated by glial aquaporin channels may
modulate intrinsic brain excitability. The aquaporins (AQPs)
are a family of membrane proteins that function as water
channels in many cell types and tissues in which fluid
transport is crucial, such as the kidney, secretory glands,
gastrointestinal tract, lung, and brain [10,11]. Aquaporin-4
(AQP4) is expressed widely throughout the brain, particu-
larly at brain-blood and brain-cerebrospinal fluid (CSF)
interfaces where it is thought to play a role in edema
formation and CSF absorption. AQP4 is abundantly
expressed by glial cells lining the ependymal and pial
surfaces that are in contact with CSF in the ventricular
system and subarachnoid space [12]. Highly polarized

AQP4 expression is also found in astrocytic foot processes
near or in direct contact with blood vessels [12]. Recently,
we found that mice deficient in AQP4 (AQP4�/�) had
decreased cerebral edema and improved neurological out-
come following water intoxication and focal cerebral
ischemia [13]. In view of the potential role of AQP4 in
mediating water fluxes in response to neuronal activity and
perhaps in seizure-induced edema, we examined seizure
susceptibility in AQP4�/� mice.

MATERIALS AND METHODS
All animal procedures were performed with an approved
protocol from the UCSF Committee on Animal Research
(CAR).

AQP4�/� mice: AQP4�/� mice in a CD1 genetic back-
ground were generated as described previously [14]. These
mice lack detectable AQP4 protein by immunoblot and
immunocytochemical analysis, and phenotypically have
normal growth, development, survival, and neuromuscular
function except for a mild defect in maximal urinary
concentrating ability produced by decreased water perme-
ability in the inner medullary collecting duct.

Immunohistochemistry: An affinity-purified polyclonal
rabbit anti-rat AQP4 antibody (Chemicon, Temecula, CA)
was used at 1:500. Briefly, mice were anesthetized with 2,2,2-
tribromoethanol (0.5mg/g, i.p.), perfused with 2% para-
formaldehyde (pH 7.4) in phosphate-buffered saline (PBS)
and sacrificed. Brains were dissected, fixed in perfusion
buffer for 6 h, cryoprotected in 20% sucrose/PBS, frozen and
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14mm coronal sections were cut on a cryostat and slide-
mounted. Endogenous peroxidase activity was quenched
with 3% H2O2/methanol for 10min, and slides were
blocked in 5% normal goat serum (Vector, Burlingame,
CA) and incubated in primary antibody (1:500) overnight at
41C. After extensive washing, slides were incubated in 1:500
biotinylated goat anti-rabbit IgG (Vector, Burlingame, CA)
for 1 h followed by 1:100 ABC reagent (Vector, Burlingame,
CA), developed with diaminobenzidine (Sigma, Saint Louis,
MO), counter-stained with hematoxylin (Biomeda, Foster
City, CA), dehydrated and cover-slipped.

PTZ injections and seizure observations: AQP4�/� mice
or wild-type controls ( + /+ ) were given the chemoconvul-
sant pentylenetetrazol (PTZ, Sigma, USA) at one of two
doses (40mg/kg or 50mg/kg, i.p.) and monitored for
seizure activity by an observer blinded to genotype. After
an initial period of immobility or normal activity post-
injection, generalized seizures manifested as the develop-
ment of forelimb and hindlimb clonus occasionally
accompanied by rearing and falling. Latency of generalized
seizures were recorded. The significance of differences in
means between wild-type controls and AQP4�/� mice was
assessed by two-tailed t-test.

Electrode implantation and EEG recording: AQP4�/�

mice (n¼ 2) and wild-type littermates (n¼ 2) were anesthe-
tized with 2,2,2,-tribromoethanol (125mg/kg, i.p.) and
placed in a standard mouse stereotaxic frame. Bipolar
electrodes made from Teflon-coated stainless steel wire
were implanted in the right somatosensory cortex (bregma
as reference: 0.5mm posterior; 2.7mm lateral; 1.0mm below
dura) by standard techniques [15]. Mice were then allowed
to recover for 2 days prior to PTZ administration. Electro-
encephalographic (EEG) activity was monitored continu-
ously before and after PTZ administration via a digital
signal acquisition system (Biopac Inc.).

RESULTS
No gross or cellular morphological differences between
AQP4�/� and wild-type littermates were seen in hippo-
campus or cortex by Nissl stain (Fig. 1a). Immuno-
histochemical analysis in wild-type mice using an
affinity-purified polyclonal antibody demonstrated intense
AQP4 immunoreactivity around parenchymal vessels, ven-
tricular ependyma, glia limitans, and diffuse immunoreac-
tivity in neuropil (Fig. 1b), similar to that reported in rats
[12]. AQP4 immunoreactivity was absent in the AQP4�/�

mice (Fig. 1b).
To examine seizure susceptibility, the chemoconvulsant

pentylenetetrazol (PTZ, 40 or 50mg/kg, i.p.) was adminis-
tered to AQP4�/� and wild-type mice, and the latencies to
generalized seizure activity were recorded. At 40mg/kg
PTZ, all of six wild-type mice exhibited seizure activity,
whereas six of seven mice deficient in AQP4 did not exhibit
any seizure activity (Fig. 2a). At 50mg/kg PTZ, both groups
exhibited seizure activity; however, the latency to general-
ized tonic-clonic seizures was significantly lower in wild-
type mice (1907 24 s, n¼ 9) than AQP4�/� mice (2987 21 s,
n¼ 9, po 0.02; Fig. 2a). To confirm that the behavioral
seizures were associated with electroencephalographic
seizure activity, a subset of mice were prepared with

indwelling cortical electrodes for seizure recording. Baseline
EEG in AQP4�/� mice was indistinguishable from that of
PTZ wild-type littermates (data not shown). Following PTZ
administration, in all cases behavioral manifestations of
generalized seizures were accompanied by electroencepha-
lographic seizure activity (Fig. 2b). Aside from the differ-
ences in seizure threshold and latency as described
above, the electrographic seizures were similar in wild-type
and AQP4�/� mice. Seizure termination was accompanied
by post-ictal depression on EEG in both wild-type and
AQP4�/� mice (Fig. 2b).

DISCUSSION
These results demonstrate that absence of AQP4 increases
seizure threshold and latency to generalized seizure. This is
the first evidence for the involvement of glial aquaporin
water channels and water transport in modulation of brain
excitability.

There is increasing evidence that water movement in the
brain involves aquaporin channels. AQP4 is expressed
ubiquitously by glial cells throughout the brain, especially
at specialized membrane domains including astroglial
endfeet in contact with blood vessels [12]. Activity-induced
radial water fluxes in neocortex have been demonstrated
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Fig.1. Histological and immunohistochemical analysis of wild-type (+ /+ )
and AQP4 null (AQP4�/�) mice. (a) Nissl stain of coronal section of cor-
tex and dorsal hippocampus. (b) AQP4 immunohistochemistry. Immuno-
reactivity was seen in + /+ mice around cortical vessels, ependymal
cells, and the glia limitans at the pial border. Sections are counterstained
with hematoxylin.
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that could be associated with water movement via aqua-
porin channels in response to physiological activity [16]. A
recent model for the role of AQP4 comes from study of mice
deficient in the gene dystrophin; in these mice there is
mislocalization of the AQP4 protein, with a dramatic
reduction of AQP4 in astroglial end-feet surrounding
capillaries [17,18]. Dystrophin-deficient mice, like the
AQP4�/� mice [13], demonstrate delayed brain edema in
response to water intoxication [18]. Deletion of a-syntro-
phin, an adapter protein in the dystrophin-containing
protein complex required for anchoring AQP4 to specialized
membrane domains [19], also leads to attenuated brain
edema in response to transient cerebral ischemia [20].
Although these studies support a role of AQP4 in brain

water fluxes, they do not establish a mechanistic basis for
the observation of decreased seizure susceptibility in
AQP4�/� mice. Since brain tissue excitability is very
sensitive to ECS volume, AQP4 deletion may alter ECS
volume or composition at baseline and/or following
neuronal activity. A larger ECS volume fraction prior to

seizure-inducing stimuli and/or a blunted reduction in ECS
volume during neuronal activity via abrogation of water
influx through glial AQP4 may limit neuronal excitability
and synchrony. Altered glial/neuronal water and K+

recycling in response to neuronal activity has already been
proposed to underlie impaired hearing in AQP4�/� mice
[21]. Definitive elucidation of the role of AQP4 in modulat-
ing brain excitability will require determination of extra-
cellular space volume, composition, and dynamics.

CONCLUSION
The increased seizure threshold and latency to generalized
seizure in AQP4�/� mice suggests that water movement via
glial aquaporin channels may modulate intrinsic brain
excitability. These data add to a growing body of evidence
implicating nonsynaptic mechanisms in seizure expression
and propagation [22]. Inhibition or modulation of AQP4 by
specific pharmacological agents may represent a novel
anticonvulsant target.
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Fig. 2. Reduced seizure susceptibility of AQP4�/� mice. (a) Latency to
generalized seizure in wild-type (+ /+ ) and AQP4�/� mice at 40 and
50mg/kg PTZ. Open circles represent individual mice; ¢lled circles are
mean7 s.e.m. *po 0.05. (b) Representative electroencephalographic re-
cordings. Generalized seizures in a wild-type mouse beginning 92 s after
injection and in an AQP4�/� mouse beginning 295 s after injection are
shown. Arrows denote onset and end of observed behavioral seizure
activity.
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