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Summary

Despite optimal clinical treatment, the prognosis for malignant gliomas remains poor. One of the primary reasons for
treatment failure is not diffuse dissemination, but local invasion. Recently, there has been an increase in information
regarding specific molecules that determine the aggressiveness and invasion potential of high-grade astrocytic
tumors. In particular, expression of matrix metalloproteases in high-grade gliomas appears to correlate with tissue
invasiveness. It is the purpose of the present review to describe the connection between alterations in growth-related
genes, protease activity, and tumor biology, and how these connections may suggest potential novel therapeutic
targets.

Abbreviations: bFGF – basic fibroblast growth factor; ECM – extracellular matrix; EGF – epidermal growth
factor; EGFR – epidermal growth factor receptor; EGFRvIII – truncated constitutively active EGFR; FGFR-1 –
fibroblast growth factor receptor-1; GBM – glioblastoma multiforme; MAPK – mitogen activated protein kinase;
MMP – matrix metalloprotease; MT1-MMP – membrane-type 1 matrix metalloprotease; PDGF – platelet-derived
growth factor; PKC – protein kinase C; PLC – phospholipase C; TBR – TGF-beta receptor; TGF-beta –
transforming growth factor-beta; TIMP – tissue inhibitor of matrix metalloprotease.

Introduction

High-grade glial tumors (anaplastic astrocytoma and
glioblastoma multiforme (GBM)) are the most fre-
quent primary brain tumors in adults [1,2]. They usu-
ally occur sporadically without identifiable familial
tendency or environmental risk factors. Commonly
arising in the deep white matter of the cerebral
hemispheres, they are often difficult to remove with-
out damage to eloquent brain areas. Typically, they
present with headache, seizures, mental status or per-
sonality changes, signs and symptoms of increased
intracranial pressure, hemiparesis, or other neuro-
logic deficit. Despite optimal current therapy, including
surgery, radiation therapy, chemotherapy, and intersti-
tial brachytherapy, high-grade gliomas are associated
with a dismal prognosis [3]. Therefore, a more thor-
ough understanding of the mechanisms of aggressive
gliomas is essential to developing rational therapeutic
strategies.

Local invasion: determinant of aggressiveness

In the first textbook devoted to brain tumors, Bramwell
(1888) emphasized that the

tendency to infiltrate the nervous structures is the
most characteristic feature of the gliomatous tumour.
The tumour tissue is never limited by a capsule, and it
is impossible to say, without microscopical examina-
tion, where the tumour tissue ceases and the normal
brain begins [4].

This characteristic, local tissue invasion, is the cru-
cial cytologic attribute that distinguishes high-grade
gliomas and makes efforts at resection often futile [5].
Furthermore, the intrinsic motility of glioma cells may
be increased in high-grade tumors [6]. Morbidity and
mortality from high-grade gliomas is directly related
to their ability to invade and infiltrate surrounding tis-
sue [1]. In careful studies, microscopic evidence of
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malignant cells can be found well beyond the gross
radiographic margins of the tumor [7]. Following sur-
gical debulking or radiation therapy, such microscopic
tumor foci lead to eventual local recurrence, usually
within 2 cm of the original lesion [1,8,9]. In addition,
stereotactic biopsy studies show scattered distribution
of malignant cells [10]. Thus, the poor prognosis of
high-grade gliomas is critically dependent on glioma
invasion.

Biology of glioma invasion

Tumor invasion consists of several discrete steps,
including tumor cell interaction with extracellular
matrix (ECM) ligands, hydrolytic destruction of the
matrix by release of proteolytic enzymes, and subse-
quent migration of the tumor cells through the area of
destruction. Of all these steps, recent studies indicate
that the ability of tumor cells to digest the ECM by
secretion of proteolytic enzymes best correlates with
the propensity for tissue invasiveness. Indeed, immuno-
histochemical analysis of the border zone between
glioma and brain (glial limitans externa) has shown it to
contain interstitial collagen, fibronectin, laminin, and
type IV collagen [11]. The invasion of most primary
human brain tumors is thought to be accomplished at
least in part by elevated levels of proteases that breach
connective tissue barriers, cause vascular remodeling
and destruction of normal brain tissue.

Proteases and tissue invasion

What are the proteases involved in ECM diges-
tion? CNS tissue contains three major groups of pro-
teases and their inhibitors: (1) matrix metalloproteases
(MMPs) and tissue inhibitors of MMPs (TIMPs);
(2) serine proteases, including urokinase, tissue plas-
minogen activator (tPA) and plasminogen activator
inhibitors (PAIs); and (3) cysteine proteases, recently
implicated in apoptosis (programmed cell death). Of
these groups, by far the most is known about the
role of MMPs in tumor invasion. Interestingly, how-
ever, recent reports correlate the level of expres-
sion of cathepsins (cysteine proteases) with clinical
invasiveness in gliomas [12] and meningiomas [13].

Matrix metalloproteases

MMPs are a multigene family of Zn+2-dependent
enzymes that degrade a variety of ECM molecules such

Table 1. Matrix metalloproteases

MMP # Common name

1 Collagenase 1
Fibroblast collagenase
Interstitial collagenase

2 Gelatinase A
72-kDa gelatinase

3 Stromelysin 1
4 Not used
5 Not used
6 Not used
7 Matrilysin
8 Collagenase 2

Neutrophil collagenase
9 Gelatinase B

92-kDa gelatinase
10 Stromelysin 2
11 Stromelysin 3
12 Macrophage elastase
13 Collagenase 3

Rat osteoblast collagenase
14 MT1-MMP
15 MT2-MMP
16 MT3-MMP
17 MT4-MMP
18 Collagenase 4 (Xenopus)
19 No trivial name
20 Enamelysin
21 XMMP (Xenopus)
22 CMMP (chicken)
23 No trivial name

as proteoglycans, glycoproteins, and types of collagen
[14] (Table 1). To date, well over 20 MMPs have been
identified [15]. MMPs are divided into several groups
by substrate specificity (collagenases, stromelysins,
gelatinases, and membrane-type MMPs); however, all
contain Zn+2 and require Ca+2 for proteolytic activ-
ity (hence the name metalloprotease). Similar to pan-
creatic enzymes or coagulation factors, MMPs are
secreted in latent precursor (zymogen) form containing
an amino-terminal propeptide sequence removed upon
activation.

The normal functions of MMPs involve processes
requiring degradation of the ECM, including wound
healing, bone growth and remodeling, angiogenesis,
macrophage infiltration, and axonal growth cone exten-
sion [16,17] (Table 2). In 1980, Liotta et al. [18]
were the first to demonstrate elevated expression of
MMPs in melanoma cells with metastatic/invasive
potential. Since then, this central role of proteases
in tumor invasion has been amply demonstrated
[19–23].
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Table 2. Physiologic and pathologic roles of matrix metallo-
proteases

Physiologic roles Pathologic roles

Wound healing Tumor invasion
Bone growth and remodeling Tumor angiogenesis
Angiogenesis Tumor metastasis
Macrophage and neutrophil function Rheumatoid arthritis
Embryogenesis Gastric ulcer
Axonal growth cone extension

Of central importance for the biology of glial
tumors in particular is the extent to which MMP
expression reflects histologic and clinical invasiveness.
Indeed, immunohistochemical studies have shown that
high-grade human gliomas (GBMs and anaplastic
astrocytomas) express MMPs, whereas non-invasive
low-grade astrocytomas and normal brain do not
[24]. In addition, abundant evidence indicates that
in high-grade gliomas proteolytic activity appears to
be strongly correlated with destructive and invasive
properties in vitro and in vivo [25–31]. The mem-
ber of the MMP family emerging as most central
in glioma invasiveness is MMP-2 (72 kDa-type IV
collagenase). In vitro studies reveal that inhibitors
of MMP-2 block glioma invasion, whereas increas-
ing MMP-2 activity increases glioma invasiveness
[32,33]. Recently, ex vivo studies as well demonstrate
increased MMP-2 activity in resected glioblastoma
specimens compared to normal brain or low-grade
glioma [34].

Regulation of metalloprotease activity

Regulation of MMP expression is crucial in determin-
ing the overall level of protease activity and hence
the propensity toward tissue invasion. Regulation of
MMPs is accomplished at three levels. First, since
MMPs are released from cells in latent precursor
(zymogen) forms, they must be activated in vivo by
other proteases. MMPs are activated by either the
urokinase/plasminogen/plasmin system or by other
membrane-bound MMPs [14,23]. MMP-2, the pro-
tease most prominently implicated in glioma inva-
siveness, has been shown to be activated not by
the soluble urokinase/plasminogen/plasmin system but
rather by an integral plasma membrane-bound protease
termed MT1-MMP (membrane-type 1 MMP) [20,35].
MT1-MMP is also upregulated in human gliomas [31],
and serves to concentrate the activation of MMP-2
activity at the cell surface, presumably to facilitate

ECM digestion and thus invasion locally at the tumor
margin.

Interestingly, the most common pattern of spread of
malignant glioma cells is along the path of the deep
white matter tracts, in particular the corpus callosum,
producing the so-called ‘butterfly glioma’ [36,37].
How these cells can do this at all is of interest since
CNS myelin contains proteins inhibitory to migration
of most cell types. However, two recent studies shed
light on this issue. First, white matter microglia have
been shown to express high levels of MT1-MMP [38],
and perhaps could activate MMPs secreted by invading
glioma cells thus providing a permissive substrate for
infiltration [23]. Second, C6 glioma cells and human
glioblastoma cells themselves express MT1-MMP, and
this appears to be required for migration through CNS
white matter [39]. In support of this contention is
the observation from the same study that transfection
of naı̈ve rat 3T3 fibroblasts with MT1-MMP bestows
the ability to migrate on the (previously) nonpermis-
sive myelin substrate and invade adult rat optic nerve
explants [39].

The second mode of regulation of MMPs is tran-
scriptional activation or repression. Most MMPs are
not constitutively expressed but are modulated at the
mRNA level by growth factors, cytokines, and onco-
gene expression (see below). For example, bFGF
induces collagenase mRNA in endothelial cells [40],
whereas transforming growth factor (TGF)-β1 inhibits
[41] and EGF induces [42] stromelysin in fibroblasts.

The third mechanism of regulation of MMP activ-
ity is post-translational interactions with naturally-
occurring TIMPs (TIMP-1 through TIMP-4) [43].
These proteins bind to MMPs and abrogate their prote-
olytic activity [14,44]. Thus, the net invasiveness of any
tumor is thought to rely on the protease/antiprotease
balance of tissue activity rather than absolute lev-
els of protease gene expression. Indeed, as expected,
potent anti-invasive activities of TIMPs have been
amply demonstrated in multiple in vitro cancer models
[45]. Transfection of cells and glioma cell lines with
TIMPs greatly reduces local tumor invasiveness in vitro
[46,47]. In concert, ex vivo data from glial tumor
specimens show that TIMP levels correlate negatively
with invasiveness (lowest for glioblastomas, higher
for lower-grade gliomas and normal brain) [24,48]. In
other words, just those molecules (TIMPs) expected
to limit invasiveness by neutralizing MMPs are under-
expressed in high-grade glial tumors. Whether and how
TIMPs are coordinately regulated in glial tumors along
with MMPs remains to be investigated.
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Genetic alterations in growth-related genes

A prevalent current theory of neoplasia derived from
studies of colon carcinoma holds that high-grade
tumors result from step-wise and progressive loss of
tumor suppressor genes (such as P53) and/or mutation-
induced activation of important growth-related proto-
oncogenes. These genetic changes together result in
the promotion of growth and/or prevention of cell
death in the tumor, and the acquisition of charac-
teristics of malignancy, such as tissue invasiveness,
the ability to metastasize, and resistance to antineo-
plastic chemotherapy. Similarly, alteration of growth-
related genes in gliomas lead to increased tumor growth
and invasiveness [49,50]. As summarized below, the
alterations in these genes may lead to increased tis-
sue invasiveness of gliomas via alteration of protease
activity.

Tumor suppressor genes

Inactivation of tumor suppressor genes has been found
to underlie many types of human cancer, including
malignant glial tumors. P53 is the most common tumor
suppressor gene implicated in human tumors. This gene
encodes a 53-kDa protein product that is a transcrip-
tion factor known to influence progression through the
cell cycle, especially via inhibition of cyclin-dependent
kinases (CDKs) [51,52]. Inactivation of P53 results in
loss of growth control and subsequent neoplasia. The
tumor suppressor genes NF1 and RB1 have also been
associated with glioblastomas [49]. Interestingly, how-
ever, in contrast to the case with proteases, P53 muta-
tions are common in low-grade glial tumors as well
as in glioblastomas [53], although the number of P53
and other tumor suppressor gene mutations may dif-
fer between de novo GBMs and GBMs arising from
prior low-grade tumors [54]. Thus, mutation of P53
may be involved in early stages of astroglial neopla-
sia but not be sufficient alone for the progression to
high-grade tumors. From this, one might expect that the
prognostic value of P53 is limited, and indeed the pres-
ence of a p53 gene mutation does not predict survival
in glioma patients [55,56]. In contrast, there is some
evidence that mutations in the tumor suppressor gene
RB1 (retinoblastoma gene) may be involved in a subset
of glioblastomas [57,58]. Also, loss of more recently
described tumor suppressor genes such as PTEN on
chromosome 10 may contribute to oncogenesis fol-
lowing deletion of a variety of chromosomal loci in
high-grade glial tumors [59,60].

Inactivation of known tumor suppressor genes may
directly regulate metalloprotease expression and/or
activity and thus directly influence tumor invasive-
ness. For example, mutations in the TGF-beta receptor
(TBR)-II gene, one of the three TBRs, in vari-
ous carcinomas suggest that these molecular alter-
ations are responsible for altered matrix metabolism
(in tumor and stromal cells) [61]. Indeed, P53 has
been shown to directly downregulate MMP-1 expres-
sion [62]. Similarly, reintroduction of wild-type P53
in human melanoma cell lines reduces tissue inva-
siveness in association with reduced levels of secreted
MMP-2 [63].

Cyclins

Cyclins, which trigger downstream signaling cascades
by activating CDKs, are integrally involved in cell
growth and differentiation. Cyclin D1 in particular is
known to regulate the G1-S cell-cycle phase transi-
tion and has been implicated in tumorigenesis [64,65].
Furthermore, cyclin D1 is amplified or over-expressed
in a variety of tumors and is associated with a greater
risk of relapse [52,66].

MMPs may be part of the effector mechanism for
cyclin regulation of tumor progression and invasive-
ness. For example, a recent study shows that over-
expression of cyclin D1 increases MMP activity and
resultant cell motility and invasiveness [67]. Therefore,
increased expression of growth-related genes such as
cyclin D1 may not be simply a proliferative tumor sig-
nal but may also directly elaborate proteases to increase
tissue invasiveness. Further studies are necessary to
delineate the alterations in cyclin activity during glial
tumorigenesis.

Growth factors and growth factor receptors

Mutations in many growth factors and their receptors
have been discovered in malignant gliomas. The
co-expression of growth factors and their cognate
receptors by the same tumor allows for autocrine
stimulation of growth. For example, gliomas are
known to concurrently express the angiogenic factor
and astroglial mitogen basic fibroblast growth factor
(bFGF) and its receptor FGFR-1 [68–70]. Similarly,
gliomas have been shown to co-express platelet-
derived growth factor (PDGF) and its receptor [71–73].

However, the most common and best-described
alteration appears to be amplification of the receptor for
epidermal growth factor (EGFR) in a high proportion
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of malignant gliomas, occurring in approximately 40%
of GBM tumors but in very few low-grade glial tumors
[74–76]. In addition, some GBMs express a truncated
receptor that is constitutively phosphorylated (termed
EGFRvIII) [77,78]. This constitutively active receptor
has been associated with increased activation of down-
stream metabolic signaling pathways (e.g. ras-MAP
kinase cascade) and with increased growth potential.

The prognostic relevance of EGFR gene amplifi-
cation or mutation in human glioblastoma has been
controversial [49]. However, a recent study examined
the molecular phenotype of EGF receptors and down-
stream signaling transduction pathways in a group
of astrocytic neoplasms [79]. In this study, speci-
mens from 15 tumors (12 GBMs, 2 gliosarcomas,
and 1 low-grade glioma) and control tissue were
analysed for EGFR phenotype and ras/MAPK acti-
vation. The authors found higher levels of activated
ras and MAP kinase in GBM specimens compared
to low-grade glioma or normal brain. In addition,
they demonstrated a correlation between expression
of the constitutively active form of the EGF recep-
tor (EGFRvIII) and shorter life expectancy (4 months
for EGFRvIII-positive tumors and 11 months for
EGFRvIII-negative tumors). Such evidence suggests
that molecular classification of glial tumors may help
prognosticate outcome as well as target molecular
therapy.

Interestingly, as for cyclins, effects of growth factors
on tissue invasion may be directly related to their modu-
lation of MMP expression. For example, EGFR expres-
sion in non-small-cell lung cancer [80] and head and
neck squamous cancers [81] strongly correlates with
increased MMP-9 activity and poor clinical outcome.
bFGF is known to upregulate collagenase in endothelial
cells [40] and EGF induces stromelysin in fibroblasts
[42]. These effects may be at least partially via growth
factor-mediated stimulation of protein kinase C (PKC),
a phospholipid-dependent serine–threonine kinase that
is a central intermediate in signal transduction path-
ways from the cell surface to the nucleus. PKC
activity is high in high-grade gliomas [82], and inhi-
bition of PKC via chemical inhibitors or antisense
oligonucleotides dramatically reduces the invasiveness
of malignant gliomas in vitro [83] and in vivo [84].
Similarly, PKC inhibition with calphostin C reduces
and PKC activation with phorbol esters increases
MMP-2 activity in concert with invasiveness in vitro
[33]. In recent work, Yong and colleagues [23] have
suggested that the mechanism by which PKC activation
leads to increased MMP-2 activity is via transcriptional

activation of MT1-MMP (the primary activator of
MMP-2). Through these mechanisms, there appears
to be a direct link between upregulation of growth-
related genes and downstream expression of increased
matrix-degrading protease activity.

Angiogenesis and protease expression

Vascular remodeling and growth of new vessels
(angiogenesis) is a critical component of tissue inva-
sion and tumor progression. Tumor vasculature often
exhibits distinct expression of cell surface proteins,
including integrins, growth factor receptors, and
MMPs. Thus, in addition to the role for proteases
described above in tissue invasiveness and their poten-
tial connection to tumor suppressor genes, cyclins,
and growth factors, proteases may also be specifically
involved in tumor angiogenesis.

Indeed, MMP-2 (gelatinase A) is known to be upreg-
ulated in GBM, and especially in endothelial cells of
blood vessels, suggesting a role in the marked neovas-
cularization that is a hallmark of glioblastomas [34].
Consistent with this possibility, MMP-2-deficient mice
demonstrate reduced angiogenesis and tumor progres-
sion originating from implanted melanoma or lung
carcinoma cells [85].

From a therapeutic perspective, selective upregula-
tion of molecules in tumor endothelium provides a win-
dow for molecular discrimination between normal and
tumor tissue, and this approach is actively being pur-
sued. For example, TIMPs may act to inhibit tumor
angiogenesis [43]. The precise interactions between
MMPs and tumor angiogenic factors such as VEGF
and their regulation remain to be better defined. How-
ever, tantalizing evidence exists for such a connection.
For example, MMP-9 is known to release extracellu-
lar VEGF to accomplish the ‘angiogenic switch’ in
pancreatic islet cell carcinogenesis [86].

Prognostic factors and therapeutic targets

The constellation of cellular alterations in glial
cells that leads eventually to a highly-invasive glial
tumor has been extensively studied. As described
above, a variety of mutations in growth-related genes
(oncogenes) and tumor suppressor genes have been dis-
covered [49]. Accumulation of these mutations puta-
tively leads to cellular alterations in signal transduction
pathways involving molecules such as PKC that have as
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their downstream targets protease activities that medi-
ate tumor invasiveness. It is clear that rate of prolif-
eration of tumor cells alone does not account for the
‘malignancy’ of a glial tumor; rather, the invasiveness
of high-grade glial tumors is at least as insidious and is
directly related to local recurrence and eventual treat-
ment failure.

Therefore, the most clinically relevant downstream
effect of genetic alterations in glial tumorigenesis may
be the elaboration of molecules supporting invasive-
ness. Recent advances in understanding the signal
transduction pathways and effectors of tumor invasion
have not only provided potential molecular prognostic
factors for individual tumors but also suggested critical
steps that provide therapeutic targets for modification
and inhibition of the cascade of tumor invasion.

Growth factor signaling mechanisms have been
targeted in pre-clinical and early clinical trials of
novel therapeutic agents. For example, radiolabeled
(125I) monoclonal antibodies to the EGF receptor
have entered Phase II clinical trials [87]. In another
approach, immunotoxins directed at novel EGF recep-
tors expressed selectively in glioblastomas have shown
activity in an animal model of neoplastic meningitis
[88]. In addition, antisense oligonucleotides to EGF
RNA inhibit growth of C6 glioma cells in vitro and
in vivo [89]. Protein kinase C, a second messenger tar-
get of EGF, is also a promising target of anticancer ther-
apy [90]. In a small subset of glioma patients, chronic
high-dose oral tamoxifen, known to inhibit PKC [91],
provided some improvement [92,93]. In addition, inhi-
bition of phospholipase C (PLC)-γ , a cytosolic enzyme
that is an important downstream effector of EGFR acti-
vation, abrogates glioma invasion in animal models
[94]. It is possible that determining the specific growth
factors and growth factor receptors expressed by a par-
ticular tumor (molecular phenotyping) would aid in
more specific therapy in the future.

Matrix-degrading proteases appear to be an
extremely promising target for therapy [23]. What-
ever the upstream mechanism of neoplasia (e.g. EGFR
amplification, P53 mutation, cyclin alterations),
proteases may constitute a ‘final common pathway’ for
tumor invasion [23]. Alterations in oncogenes, growth
factors, second messenger molecules (e.g. PKC), and
cyclins act in concert to modulate protease activity.
Increasing evidence suggests that virtually all tumors
utilize proteases to invade the ECM. Furthermore,
knowledge of the regulation of protease activity has led
to synthetic inhibitors of specific proteases, which may
specifically target therapy toward individual proteases

and individual tumors. For example, since MMP-2
appears to be the MMP most strongly implicated in
glioma invasiveness, specific MMP-2 inhibitors that
do not affect other MMPs would perhaps better tar-
get glioma invasion and be better tolerated than broad-
spectrum MMP inhibitors. An alternative target would
be MT1-MMP, which activates MMP-2 and by itself
can confer invasiveness to glioma cells in vitro [39].

Indeed, in vivo studies have already demonstrated
efficacy of MMP inhibitors at inhibiting tumor inva-
sion [95,96]. BB-94 (batimastat), a synthetic broad-
spectrum MMP inhibitor, reduces invasiveness of a
variety of tumors in animal models [97,98]. However,
its poor oral bioavailability led to the synthesis of mari-
mastat [99], which is in early clinical trials. Both of
these molecules are synthetic peptides that mimic the
structure of collagen and form a complex with the
zinc ion at the active site of the MMPs. In a recent
study, both BB-94 (batimastat) and BB-2516 (marima-
stat) demonstrated efficacy at inhibiting glioma inva-
sion in vitro [100]. AG3340, a newly-developed potent
MMP inhibitor, has shown strong antitumor properties
in vitro and in vivo in a variety of tumor models [101].
Once-daily injections of AG3340 markedly inhibited
U87 glioma growth in nude mice [102]. Histologic
evidence of invasion was also reduced in AG3340-
treated tumors. In this study, AG3340 decreased tumor
size by 78% compared to vehicle-treated control mice;
most dramatically, treated mice survived an average of
71 days compared to 31 days for controls [102].

Of course, the normal functions of proteases in the
brain and body must be taken into account when consid-
ering protease inhibition as a therapeutic intervention.
It is of note, however, that inhibitors of angiotensin-
converting enzyme (ACE), a metalloprotease, have
been well-tolerated for many years in the treatment of
hypertension and congestive heart failure, with mini-
mal long-term side effects. This establishes a clinical
precedent for nontoxic systemic delivery of a specific
metalloprotease inhibitor.

Conclusion

Recent studies have delineated some of the molecu-
lar factors involved in invasiveness and aggressiveness
of glial tumors. These include tumor suppressor gene
mutations, alterations in cyclins, mutations in growth
factors and their receptors, and increased matrix-
degrading protease activity. At minimum, therapies
aimed at these targets could be seen as adjuncts to
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the traditional modalities of resective surgery, cyto-
toxic chemotherapy, radiation therapy, and interstitial
brachytherapy. One serious issue is raised by a recent
study that demonstrated that sublethal radiation may
lead to an increase in the MMP expression and invasive-
ness of glioma cells [103]. Assessment of the status of
growth factor and growth factor receptor gene expres-
sion and protease activity may aid in prognostication of
tumor invasion and clinical outcome. The level of pro-
tease activity may constitute a ‘final common pathway’
for tumor invasiveness and as such may be a particularly
appropriate target for anti-invasive therapies. Success-
ful limitation of tumor spread by anti-invasive agents
at particular stages of glial tumorigenesis could help to
convert an infiltrative tumor into a local tumor and thus
convert a lethal to a chronic disease, or at least restore
efficacy to focal tumor therapies. To the extent that inva-
siveness constitutes the single most destructive charac-
teristic of malignant gliomas leading to poor clinical
outcomes, it is likely that the development of potent
and specific anti-invasive agents will be an invaluable
addition to the treatment armamentarium.
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